15

. D

=

epartment of Energy

Lawrence
Livermore
National
Laboratory

="

UCRL-ID-137634

TIGER LDRD Final Report

D. J. Steich, S. T. Brugger, J. S. Kallman, D. A. White

February 1, 2000

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http:/ /www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library
http:/ /www.lInl.gov/tid/Library.html

http://www.llnl.gov

TIGER LDRD Final Report

EXECUTIVE SUMMARY

This final report describes our efforts on the Three-Dimensional Massively Parallel CEM
Technologies LDRD project (97-ERD-009). Significant need exists for more advanced
time domain computational electromagnetics modeling. Bookkeeping details and
modifying inflexible software constitute a vast majority of the effort required to address
such needs. The required effort escalates rapidly as problem complexity increases. For
example, hybrid meshes requiring hybrid numerics on massively parallel platforms
(MPPs).

This project attempts to alleviate the above limitations by investigating flexible
abstractions for these numerical algorithms on MPPs using object-oriented methods,
providing a programming environment insulating physics from bookkeeping.

The three major design iterations during the project, known as TIGER-I to TIGER-II,
are discussed. Each version of TIGER is briefly discussed along with lessons learned
during the development and implementation. An Application Programming Interface
(API) of the object-oriented interface for Tiger-III is included in three appendices. The
three appendices contain the Utilities, Entity-Attribute, and Mesh libraries developed
during the project. The theee-API libraries represent a snapshot of our latest attempt at
insulated the physics from the bookkeeping.

INTRODUCTION

Numerical simulation of PDEs is one of the cornerstones of modern engineering and
physics. PDEs describe an enormous variety of phenomena: electromagnetic radiation,
structural dynamics, thermal and fluid flow are just a few of the subject areas amenable to
numerical simulation. Over the years, a great number of computer programs have been
written to perform this simulation, and almost all of them have a great deal in common.
They all must represent the domain on which the problem is to be solved, they all must
use domain information to generate solver matrix coefficients, and if they deal with large
enough problems, they must partition and distribute the problem over multiple processors
and handle communications between partitions. Considering all of the codes that have .
been written and are being written, there is a huge duplication of effort.

The purpose of the TIGER project is to investigate abstractions that would make coding
easier for the authors of numerical PDE simulation systems by extracting the
bookkeeping and separating it from the physics. Examples of bookkeeping include
representing (and extracting information from) problem meshes, as well as partitioning

and communications. The vehicle for this effort was the C++ language. The object =
oriented features of C++ make abstracting the bookkeeping into a small set of classes
much less difficult.

To this end a set of libraries and a pre-mesh-processor has been constructed:
» A Utilities library.
» set of container classes suited to PDE (Partial Differential Equation) solution
> set of communication classes (Message Passing Interface (MPI) & Pthreads)
> a memory management system that organizes raw memory usage
> miscellaneous utilities (Oct-tree, Red-black binary tree, Registry, String, .
classes)
> A Entity-Attribute library.

> Attgjhgte class

> @omates the organization and construction of local, shared, and computed
ta types in a multi-processor settin

> Entity and Mesh_entity classes

AWme&M abstract %Wanage the modification of
ibute L

Species class
> @ages collections of Entities havmg an identical sets of Attributes | = .
ext¥fSive data manipulation methods 2 hosrsges e modiQedteon oF Enkities
extensive data construction methods
multi-processor Entity/Attribute communication systems
extensible programming API for data modification and association :
» A Mesh library. —x
>{(8) —of~Meshclassés that allow ability to have multiple unconnected/
ncoordinated /unstructured / structured meshes
> manages Topological connectivity between Entities
> manages the construction of mesh parts into the EntxtylAttrlbute container
> serial and parallel versions Mesh reader hierarchy
» PreTiger a pre-mesh-processor- that sets up the mesh input for TIGER in multi-
processor setting =~ @000 " ST
> manages the mesh part partitioni

VVVY VY

> re-maps non-contiguous to contiguous no
» allocates processors for each mesh part

> wrlteﬁcessor spec1ﬂc partmon ﬁles for TIGER
These librari ow the physicist or analyst to deal with the phenomena to be modeled
instead of writing code to hold and distribute meshes in memory.

This project has gone through a number of design and implementation iterations. We
have taken earlier designs to the point of building specialized Maxwell's equation
simulators. At each iteration we have improved the performance and the programmer
interface to the libraries. The first iteration culminated in TIGER-I, which was capable of
representing unstructured meshes. The second iteration culminated in TIGER-II which

was capable of representing hybrid (structured & unstructured) meshes with limited

Attribute tagging and had very limited parallel communication capabilities. The result of

the final iteration is TIGER-III, which can represent and communicate arbitrarily tagged ,
hybrid meshes. Coupled with the physicist/analyst's code and a parallel solver (Faek=ds - [51«.1«_7?9;(}
HEEFS). TIGER-III takes much of the pain out of writing PDE simulation suites. At this

time, the TIGER-III implementation is in the final stages of completion.

Background

The primary purpose of this project was to investigate the use of objented

techniques to abstract physics from bookkeeping. The motivation behind accomplishin

this task was to reduce the coding development time of complex applications.fu%’\

primary focus was to have this applicable to time domain Computational o ad v ‘C;y

ElectroMagnetics (CEM) software development with the intention of having the \ [

techniques developed here be useful to a much larger computational arena. The project Mo cod g

software is named TIGER (TIme Domain Generalized Excitation and Response). raghon Hane /
hibwot gy,

The two largest existing time domain codes CEM within engineering, TSAR (Time v

domain Source And Response), a structured Finite Difference Time Domain (FDTD)

code, and DSI (a Discrete Surface Integral (DSI), an unstructured Finite Volume Time L

Domain (FVTD) code both have severe extensibility limitations. There are numerous e

versions of both these codes each with different feature sets. So in addition having code

that was difficult to enhance, when adding new physics to the code, there was a dilemma

as to which version of the code to add it to. Often the solution was to add it to the version

closest to the problem of interest with the intention of going back later and adding the

new physics to other versions in the future. Needless to say the solution had many

difficulties. As the complexity of the problem increased the limitations mentioned above

only increased.

fAed S o
focted]

extensions.

In a typical time domain CEM code, over 90 percent of the code is devoted to
bookkeeping issues. Even the source code within the physics kernel routines themselves
is often dominated by bookkeeping. For example, a typical version of TSAR is almost
entirely bookkeeping software. Even the core FDTD, boundary condition, source, and
sensor routines are still primarily involved with bookkeeping issues. This is also the case

for the DSI code, although there are more equations there are also more bookkeeping
issues.

Approach

This section describes what we are trying to accomplish and an overview of our
approach.

In order to alleviate the difficulties mentioned in the background section, we originally
proposed the following four primary objectives:

1) to design an object-oriented framework that provides long term extensibility

2) to investigate abstractions required to efficiently insulate physics from bookkeeping

3) to develop generalized algorithms that allow the unification of existing time domain
CEM technologies

4) to formulate and validate the new physics technologies required for Advanced
Hydro Facility based on objectives 1-3.

(13

During the course of the research, we haveThanged-#ur emphasis and details of the

approach. We briefly describe the reasons for these changes in the TIGER design
sections of this report.

In simple terms, given a new, potentially unforeseen computational programmatic need,
we desire to minimize the man-effort required to solve the problem. The most obvious
answer is to already have the software required to solve the problem and have that
software easy to use. If the need requires a new software technology then the effort
required should be minimized, in part, by maximizing the reuse of existing software.

From a programmer’s point of view, our primary objective is to investigate the use of
object-oriented techniques to minimize the effort involved writing a time domain CEM p le
software application code. There are several aspects to this objective. First, we, would/JMM hev! Py
like to mipjmize the effort involved in buj dlng a new code from start to finishy Scobnd, 1 rewels

“ ull eny wef s jo, re e_ ; sftware ?‘,;é,{ﬁ;:?n%
I Just \b " L
, wul hl%elfto ni u¢h jof C' 7{

es§ iy order to prevent pr tQ gve G!Jmo'c{,’zf‘
{/Folirth] wd wold Like the i 'désignd Aife. .Kfég

”ha‘t 1‘(; written w1tht attitude that it "will be extehded” and hot{so mficl it "migh be> {:21 i,;’ /“‘!‘*

extended. Fifth;weweuld like-the technologies developed here to be as applicable as pio %);W/;
possible to as many other Engineering i\;lnd LLNL codes as possible. ., ! Q 9056, w%'
& ‘?{X"ﬁo“" pe JU OV !., Y bix

pects listed above. F ﬁlﬁﬂél(

edevelopme me. g=eewd~build an application code from start to 1 o
fmlsh measured in days/weeks rather than months/years then the need for flexibility, fz aH ﬁ,j
extensibility Lsgea&y diminished. A-peesgsammer could j> build a new code just as fast , Al
as he or she cou‘ld modgfy an existing code, N e 3973 \eép
Fnrer e T I Tog e 450 L
A}f;vr/ Te Ao i E g BRLH »eC ¢ Greadg /]U
' st

While possible for simpler, more academic problems, world class, grand-challenge, like 'f’“ >y
codes can not be built from start to finish in days at this point in time. So while reducing Ny v

Our approach to achieving the desired objectxves was to build a set of object-oriented
libraries that provide capabilities which reduce code development time. The intent
behind these libraries was to have them be highly extensible and flexible and have the
library interfaces themselves serve as the generalization and code-reuse vehicles.

The libraries would be an investigation into the automation of the bookkeeping involved
in building a time domain CEM code. Our goal was to accomplish this with minimal loss
of efficiency. We also desired this technology to be applicable to other computational
areas.

Design Overview of TIGERI _ .1, ¢/)

We began by investigating how to inSulate the physics from the bookkeeping in areas
where the majority of the software development time has occurred in the past. For time
domain CEM codes, a vast majorijty of the software development effort has been in
application of physics algorithms‘to mesh components. The bookkeeping involved in
building, organizing, traversal, and querying of data structures constitutes a majority of
the source code. Was there a way to unify this bookkeeping once and for all? Was it
possible to pull the data details away from the physics? Was it possible to unify the
hybrid nature of the mesh types, especially structured/unstructured differences? The
following was our first attempt.

The mesh management system for TIGER-I consisted of an eight layered wedding cake
of code, looking much like this:

Mesh
Unstructured_manager

Submesh_manager
Table_manager

Superset

Table
Array_of_sets

Memory and Array Classes

We will describe this wedding cake from the bottom up.

~ At the time this project started, the C++ language was still having features and libraries
added. The Standard Template Library (STL) was neither fast nor memory efficient. But
perhaps the biggest limitation was our strong desire to control the behavior of the data
placed in these STL containers. Having the data remain fixed during certain construction
phases and then relocate during others etc... are tasks the STL was not very suited for. It
was decided that we would build our own memory manipulation and efficient array
classes. The memory manipulation routines allowed us to keep track of memory (and

were of great utility in debugging). The array classes were what everything else was build
upon. The most important array classes were those that could change size:
Adjustable_arrays and Noncontiguous_arrays. Adjustable arrays are arrays that can
change their size dynamically. When a user accesses an element beyond the current array
size, the array expands to include the newly accessed portion of the array. Adjustable
arrays can be expensive, because if the array is already large and the user asks it to
expand, it is possible that the entire array may have to be copied (if the array is in a part
of memory where it can't easily expand and must be moved outright). Non-contiguous
arrays are accessed in the same way that an Adjustable array is, but, behind the scenes,
hidden from the casual programmer's eye, memory is allocated in blocks, and expansion
never causes the wholesale moving of all of the data in the array. For large arrays, Non-
contiguous storage is very efficient.

Above the array classes is the Array_of_sets. Consider a space filling mesh. The mesh
has O-dimensional nodes, 1-dimensional edges, 2-dimensional faces, and 3-dimensional
cells. A node has a position, as well as a set of edges that are connected to it. An edge
has two nodes that define its endpoints, as well as a set of faces that it helps define. A
face has a set of edges, and, unless it is on the mesh surface, serves to separate two cells.
A cell has a set of faces that define it. At the time we were writing TIGER-], it would
have been possible to make an individual C++ object out of each node, edge, face, and
cell, but it would have been very expensive in terms of memory. As a way to consolidate
some of these objects into more efficient structures we built Arrays-of-sets. The sets
refer to the collections of the things that these objects point to (either directly or
indirectly). An Array_of_sets was a specialization of a Noncontiguous_array that held a
set of a particular size. Sets could be accessed, inserted, and removed.

Before describing the Table, we have to make a small detour and describe the entire
structure necessary to hold an unstructured mesh. What is necessary is a set of four data
structures, one of which represents cells, faces, edges, and nodes. The structure can be
thought of as a pillar or column. At the top of the column is an array that, given an Entity
number, will point to the sets that tell what that Entity is connected to (the ups (entities of
higher dimension), and downs (entities of lower dimension)), and what the Entity's
Attributes are. If you have a face number, you can get the face's sets, which will tell you
the numbers of the cells the face is separating, as well as the numbers of the edges that
make up the face. In addition you can get the face's Attribute (an integer tag). Similar
arrangements hold for cells, edges, and nodes, although for nodes there is an additional
array that is needed to hold the node positions.

Tables contain Arrays_of_sets for the ups, downs, and Attributes of a group of entities,
all of which have the same number of ups and downs. In any of the columns mentioned
in the previous paragraph there will be a number of tables. For instance, in the edge
column, there will be tables for edges with two faces and two nodes, three faces and two
nodes, four faces and two nodes, etc.

A Super_set is used as an accessor in a Table_manager. It contains member functions
that let the programmer access the ups, downs, and Attributes of any Entity. The

Super_set is also the way a programmer adds ups, downs, and Attributes. When the user
asks the Table_manager for information about an Entity, it gets passed back in a
Super_set.

The Table_manager is, for the most part, the column mentioned previously. It manages
all of the tables necessary to describe, for instance, all of the edges in a mesh. If an
Entity has an up or a down added to or removed from it, the table manager takes it from

its current table and puts it into the appropriate one. This happens without the knowledge
or interference of the programmer.

The Submesh_manager is an abstract base class that represents all things that manage the
four columns mentioned earlier. It has placeholders for methods for accessing
Table_managers f(\)r each of cells, faces, edges, and nodes as well as loading of all of
these entities. The reason this class is abstract is that it was supposed to be a unified
interface to both structured and unstructured sub-meshes.

The Unstructured_manager implements the Submesh_manager interface for unstructured
meshes. In addition to the cell, face, edge, and node Table_managers, it also contains an
array to hold global node numbers (important in the construction of the mesh). It has the
actual methods for accessing the Table_managers and loading the mesh.

“The Mesh class is meant to hold a set of Submesh_managers and deal with their
interfaces. Mesh currently has the ability to hold a single Unstructured_manager. The

Mesh class was used in a prototype physics code that was used to model electron
accelerator compongats.

At this point we constructed a prototype Mesh management system. Next, we tested
the prototype version out to see how successfully the bookkeeping was abstracted from
the physics. We built a finite volume DSI formulation time domain electromagnetics
code from scratch using our Mesh management system. The original code ®ag developed
by Neil Madsen at LLNL, was a FORTRAN based code that took many man-years to
develop. To build and debug that code from scratch without using Mesh management
system would have a tremendous effort probably requiring at least a m ear’(‘lﬁ'ﬁ(/:t/__
another FORTRAN version had besusbs =t required fan-years but included
particles). Our Mesh management system was far from complete. The software required

iterators, better data manipulation support, and much better interfaces but it was far
enough to test.

onet

A great deal of effort went into this test. We successfully added the DSI physics kernel

and complex sources and sensors. In addition, modifications were made to compute

accelerator wake fields on the fly (in contrast to post processing for wake fields). These -
modifications made it possible to derive the wake fields for model e-beam kickers ina__ , fo, 51 R
single run rather than requiring two runs, storing massive quantities of data, and Ppost

processing. While the product of our test was just a serial DSI time domain code, the

software had new physics not even in the original code. We able to build and test real

accelerator problems not possible prior to this project.

LRSS

We successfully modeled several AHF 1cker structures and achieved over a two order of
magnitude reduction in the number of\ equired unknowns compared to earlier TSAR
models. We had turn around times that=fequired hours rather than weeks of CPU time.
From many perspectives we were very pleased with the results. Very early in the project
we had already achieved many of our objectives with regard to AHF accelerator

components. However, this was just a prototype version; we next turned our attention to a
hybrid mesh, massively paralleL)verswn o

I ey \/ -
-~

[

: on. Most of the time the abstractions worked well
and allowed us to the code on the order of one third the effort. (Here “one third the
effort” is just an educated guess based on our experiences.)

The biggest limitation of the TIGER-I scheme was that there were too many layers of
software, each of which occasionally had to be punctured to allow access to lower levels.
The syntax that developed over this evolution was awkward and unwieldy. Decisions
made early in the development of TIGER-I made it difficult to incorporate hybrid meshes
(structured or unstructured). In addition there were unacceptable memory overheads and
the software ran slow. The decision was made to start over with a very different model of
Mesh management system in our next version.

From a flexibility and extensibility point of view, we found the TIGER-I scheme limited.

TIGER-I consisted of containers that managed large collections of Mesh components.
" There was and Array_of_sets container where nodes, edges, faces, cells where placed.
From a finite difference or finite volume approach we found the rigid nature of our data
layout too restrictive. We knew that some of these concerns would go away as we added
material, interface, field, algorithm, etc... classes, but a many of the limitations where
solely based on the lack of quick, transparent access to data. For example, suppose we
wanted to apply a particular algorithm to all the edges of a problem space that had one
node on the surface of two materials and the other node within a material. The only
solution was to loop over all the edges and check each edge’s data. In general, we had no
way of iterating over data, (i.e., all cells containing the material copper), without iterating
over all the entire mesh. What was most disconcerting was that this general way of
accessing the data was by far the most common way we wanted to access the data. Ina
finite difference scheme there often is no real mesh. The mesh is implied by position
within an array or by formula. A very common method is to tag various mesh
components with data and iterate over the data independently from the mesh. Much of the
complexity of the existing software was created to specifically address this need and our
Mesh management system did not handle this well. The approach we ended up taking
was to iterate over all the edges or faces and applys@athe appropriate algorithm based on
looking at the data. This was limiting in that it created a host of special cases especially
when the questions determining the algorithm were of compound nature and/or involved
indirect nearest-neighbor topology considerations. This approach did allow us to build a
code but we wanted to address this limitation in our next version.

Organizing the data based on data and data associations could alleviate our general data
access and iteration needs. Also, moving the data abstractions down to very low levels

(i.e. nodes, edges, fac ould reduce the required complexity of management
systems and provide the\object-oriented freedom we were striving for. The question was
how to accomplish this. \ It is very well known in object-oriented environments that if
performance is an issue tha$ abstractions should not be down at the lowest levels. We
were already running into performance concerns in TIGER-I due to the very light weight
nature of finite difference and finite volume techniques. Typically, we have say two
multiplies and two additions per component of work to perform for every memory fetch
that is required. This small CPU effort per data item is the primary reason why the
execution of finite difference and finite volume schemes are typically always memory
starved. So the notion of having hundreds of millions of objects being constructed, each
with its own data and methods, rather than accessing a few tens of large containers
sounded appealing but appeared to be impractical. Both the memory footprint on a per
object basis and the CPU required to accomplish this seamed daunting.

We learned a lot from out first version. An overview of our experiences to date were that
while that object-oriented programming using C++ was very powerful it had some large
limitations that we had to overcome on the project. The C++ compilers were deficient
but were improving. Object-oriented programming was no silver bullet, it was going to
be a lot of design and hard work. Memory and CPU efficiency concerns influenced our
design and implementation far more than we would have liked. Our experience to date
was that object-oriented software development was no faster than FORTRAN software
development when the core class abstractions needed to be modified. Perhaps it was
even slower due to the tremendous extra effort required to design the classes. However,
the end product was much more flexible and C++ was inherently better suited to adding
behavior extensions than FORTRAN.

Design Overview of TIGER-II

In TIGER-1I the basic philosophy of how the mesh was to be stored was changed. Instead
of storing indices into tables as the ups and downs of an Entity, actual pointers to the
entities are stored. This removes a step from the process of moving from one Entity to
another, and it was hoped this would bring an increase in speed to the code. More
fundamentally it facilitated the use of pointers to real objects rather than having an index
into a container where raw data lived. Another philosophical difference is that instead of
having a single integer tag to describe everything there is to know about an Entity, we
wanted to be able to tag entities with arbitrary Attributes. We wanted to add the
capability to efficiently access the data in user defined ways. If possible we wanted to
have more polymorphism at node, edge, face, cell level and not up at the container level.
In addition, we wanted to have hybrid meshing and parallel processing built more
explicitly into the code.

Another difference between TIGER-I and TIGER-II architecture is that in TIGER-I
entities were divided into cells, faces, edges, and nodes, while in TIGER-II there are only
entities. Entities have Attributes, some of which are local (such as position, or material),
while some are shared (such as whether an Entity is a node, edge, face, or cell). In

TIGER-II entities were stored in two parts. Every Entity could have local data which was
stored in an Entity specific piece of memory, but every Entity also had shared data
(Attributes and the number of ups and downs). The Attributes of a group of entities were
collected in one place (called a Domain), which was pointed to by every Entity that
shares those Attributes. The local data (including the pointers to the ups and downs)
were stored in Noncontiguous arrays. For unstructured meshes there was one
Noncontiguous array for each Domain, while for structured meshes it was possible for
many types of entities without local data to live in a single Noncontiguous array and
point to different Domains.

As stated above, we wanted to have a more general Attribute tagging ability in TIGER-IL.
We wanted to be able to tag any Entity with any Attribute. To this end we built a number
of Attribute data classes, all of which were specializations of a root Attribute class. Any
Entity could have one Attribute from any of these classes (although some we

contradictory: it doesn't make sense to have an Entity that has both Node Cell

Attributes). The Entity Attributes were pointed to by the Entity's Domain. Attribytescan, Ce v

1

have three types of data in them: local, shared, and computed. Local data are specific to
an Entity, and there must be room allocated to store the local data when the Entity is
created. Shared data resides in the Attribute and has no memory overhead. Computed
data is generated every time the appropriate Attribute method is called and has no
memory overhead (especially. useful when trying to determine the ups, downs, and
positions of entities in a structured mesh). Adding an Attribute to an Entity causes it to
change Domains to one that has that Attribute in addition to all of the current ones. If a
Domain with the Entity's new Attribute set doesn't exist, a new Domain is created, and a
new Noncontiguous array (with spaces sized for the new Entity) is generated to hold the
Entity. The Entity is moved and the local data for its Attributes are put in the appropriate
places in its new place. 1

i) SE bt adwme A, o e -
SCEF!g_UI_’CI{‘Y)fi 4 gvaiol\,,g) "[D?CI{\L"‘ (e 77 “"”{’m"{i ' ‘v{’ i if'"‘f{fr “F —
A great deal of effort went into making sure that TIGER-II would be able to use hybrid
meshes. Hybrid meshes are meshes that are made of a number of sub-meshes, any of
which may be structured or unstructured. Structured meshes have the potential to greatly
reduce the memory required to store them because all of the mesh parameters (positions,
lengths, areas, directions, and volumes) can be computed from a very few values.
Multiple unstructured meshes allow different mesh generators to be used in different
parts of the problem (an advantage in some circumstances). To simplify the coding we
decided to only hybridize unstructured meshes. In order to hybridize structured meshes
(either to other structured meshes or to unstructured meshes), they had to be wrapped in
an unstructured skin. Reconciling meshes to one another also turned out to be a difficult
problem on single processors, as the individual meshes each had their own node numbers
which made it difficult to find corresponding nodes, edges, and faces.

The overall structure of TIGER-II looks like this:

Supermesh
Mesh

Factory
Domain Entity Attribute
Array

At the bottom once again is the Array class. The STL libraries still did not perform as we
needed them to in order to make best use of memory and CPU. The Array classes were
very similar to those developed in TIGER-I and little effort went into changing them.

The Entity, Domain, and Attribute classes were all interdependent upon one another. An
Entity contains a pointer to a Domain, pointers to the ups and downs, and whatever local
data needs to be held by its Attributes (pointers to which are held in its Domain). The
Attribute classes tell the Entity what it is. There are broad groups of Attributes (such as
Topology, which tells an Entity if it is a Node, Edge, Face, or Cell, and Material, which
tells an Entity if it is a Maxwell_Material (and if so if it is copper, aluminum, etc.)). Any
Attribute pointed to by an Entity's Domain points back to the Domain. The Domain
holds all of the shared information pertinent to a set of Entities (all of the Attributes they
contain, how many ups and downs they have, how many there are, and where they start in
memory). If any of the Entities held in a Domain change in any way (adding an up or a
down, adding or cutting an Attribute, etc.) then that Entity is removed from the Domain's
care, and handed off to another Domain. If there is no Domain currently existing that has
the Entity's new Attribute set or up or down count, the Factory creates a new Domain.

The Factory creates Domains and Entities. A request to create an Entity arrives at the
Factory with a set of Attributes that describe it and the desired number of ups and downs.
The Factory looks through the records of previously created Domains to find one that
matches the Attribute set and up and down counts. If it is unable to find a Domain to
match, it creates one, as well as allocating a Noncontiguous_array in which to hold the
Domain's Entities. After finding (or creating) the relevant Domain, the Factory creates an
Entity in the Domain and returns a pointer to it.

The Mesh is the object that asks the Factory to make Entities. The Mesh has two jobs:
load a mesh from a file, and provide a set of Entities based on a user supplied filter. In
loading, for example, an unstructured mesh from a file, the Mesh class uses the Factory to
first create the Entities that represent the nodes. These Entities have a Node Attribute
(which contains the node position information), and, initially, no ups or downs. As they
are loaded, their global node numbers and a pointer to their corresponding Entity are
recorded. After the nodes are loaded, the cell records are read. These records contain a
material number and a list of global node number from which the cell is constructed. The
order of the cell's global node numbers gives the connectivity of the mesh and specifies
the edges and faces that need to exist before the cell can be created. Some of the edges
and faces may already have been created, and we have to use the global node numbers to
access the cell's Node Entities, and check to see if they have the appropriate edges shared
between them. If they don't, the edges have to be created (by calling the Factory to create
an Entity with an Edge Attribute, two downs, and no ups), and connected to the
appropriate Node Entities (which have to have an up added to them, so they move in
memory). Once the Edges are in place, the Faces must be either found or created (and

connected the Edges (which move)). Finally, the Cell can be created (and connected to
the Faces (which move)). Loading structured meshes is less straightforward.

The Mesh's second job is to give the user a set of Entities based on a user-supplied filter.
By specifying a filter, the user asks for the Entities that have particular Attributes and up
and down counts. So if, for instance, the user wanted to see the exterior of the mesh, he
would build a filter that asked for all Face Entities with one up (one cell). When coupled
to a visualization tool, this would allow inspection of the mesh to determine if there were
loose faces flapping around on the interior. Filtering and visualization where of great
utility in debugging.

The Supermesh is the object that orchestrates the loading of the multiple meshes and
reconciles them to existing together. The Supermesh reads a supermesh file which tells it
what kind of mesh files to load and the associated mesh file names. Once each of these
meshes is loaded independently, the Supermesh reconciles them. Reconciliation works
as follows: for every Mesh, every exterior Face is examined to see if all of the Nodes of
the Face are duplicated in any other Mesh. If they are, and they make up a face, then the
Edges of the Nodes are pointed to the duplicate Nodes, and the Nodes are deleted. The
Face is pointed to the duplicate Edges, and the Edges are deleted. The Face's Cell is

pointed to the duplicate Face, and the Face is deleted. There are many special cases and
the process is quite involved. /&j\
\ oV {

TIGER-II removed many of the limitations we found in TIGER-I. The useﬁﬁﬁﬁaj’i;—
define, in a limited sense, the data organization making it possible to say something like
“Iterate over all edges having Attribute “XYZ” connected to faces containing 3 edges”.
This was a runtime question requiring no new code to be written. This freedom allows
one to trivially attach data, Attributes, algorithms, etc... over arbitrary collecti
Entities. The abstractions have been moved down tot

.. Azt e T

element meshes automatically. V1a a s1mp1e Graphlcal : erface (GUI) the user can
apply a filter string to query the resultant mesh. TIGER-II supports hybrid meshes in that
a smgle unified interface\exists e and query the mesh independent of the

€ vyl (; d f)/

rality and had #m&h improved interface over
TIGER-I. TIGER-II also allowed limited massively parallel unstructured meshes. (The
massively paralle]l hybrid meshes implementation was not CW >d
presented with a nice clean interface but the bookkeeping abstracted behind the

interface was=wesy_complex. In fact, the processes of structured mesh loading and of

mesh reconcﬂlatlon were so involved that they made further progress on the code
extremely cumbersome. Structured meshes had to live at known memory locations and

needed to be wrapped in an unstructured layer so different mesh types could be stitched

together. When multiple structured meshes came together the same mesh Entity had to
live at multiple known locations. Extruded and revolved meshes were truly hybrid in that

TIGER-II provided a huge jumﬁ in

\ Bﬁuﬁﬁ\{, Véw}/

some of their topology was computed and some ‘was pointer referefices. So when a user

invoked some action that caused an Entity to relocate the bookkeeping involved with
abstracting the bookkeepin

Also, we expended a great— of our effort trying to keep our design and
implementation efficient alohg the way. How f'“ ;
0

ven though we were able to design a
class structure that had very few virtual funct{onsyp formance was starting to become a

\

problem. Actual performance is problem dépemdent but roughly speaking our final
TIGER-II implementation/is on the order of 10 times slower than its tuned FORTRAN.
To be fair TIGER-II is dealing with a complexity far surpassing the requi
bookkeeping for DSI or TSAR and most of the performance difference i ociated with
this complexity. Note ‘these times are only approxima only include the Mesh
construction times. The overall CPU time differences ‘much less, perhaps (2x-3x). The
required memory was similar but slightly larger ~1.4X (TIGER-II versus FORTRAN DSI
EMCC research version. Most of the versions of DSI actually require more memory than
TIGER-II but this is due to making ‘conservative array size estimates. The 1.4X was
calculated some time ago using theoretical DSI minimum required memory. The details
~ have been lost and are only included to give some simple sense of memory overhead.)

On one hand, future physics packages would be spared much of this complexity, and after
all, the insulation of the physics from the bookkeeping was what we were trying to
achieve. There would hopefully be many physics packages but we only needed one
bookkeeping package and this was essentially written. On the other hand, through our
research we discovered ways to significantly reduce the complexity of our
implementation and ways to further improve the memory overhead and flexibility of our
interface.

A major redesign and implementation of our abstractions would be a huge undertaking so
late in the project even if we used the latest in modern software techniques. However, the
expected increase in capability, flexibility, maintainability, and performance, as well as
the expected decrease in complexity would dramatically improve this research effort. It
was a very tough decision to make.

For above mentioned reasons (as well as the Attribute tagging not being as general as was
deemed necessary, difficulties doing mesh reconciliation over multiple processors, and
lack of thread safety), it was decided that TIGER-II would be discontinued, and TIGER-
III was brought into being. Having an unplanned third version start so late in the project
meant that we would not have the time to put new physics into the last version to
demonstrate its capabilities but the core of our research thrust was to investigate flexible
abstractions to insulate the physics from the bookkeeping.

Design Overview of TIGER-III

TIGER-HI was designed to alleviate the deficiencies of TIGER-II. One of the
implementation complex and most time consuming (and never actually completely
debugged) parts of the coding for TIGER-II was the reconciliation routine. TIGER-HI

—

did away with the necessity of after the fact reconciliation by examining each incoming
node and determining if it had already been loaded from a previous mesh file. TIGER-III
tries to address bookkeeping issues in a more fundamental way than did TIGER-I or
TIGER-II. The following sections describe an overview of three API libraries developed
in the project. The three appendices are large machine generated text documenting the
current state of TIGER-III’s API. The automated appendices are far from polished and
have many grammatical, spelling, syntactical, or outdated comments. The appendices are

included for completeness and to help supplement many details missing in the following
sections.

The computer science aspects of this project are not called out specifically in this
document. It is the authors’ intent to describe the design patterns used in TIGER-III in a
computer science publication after the implementation of three libraries is finished. Here
we will just give an overview of the large packages that constitute TIGER-III’s API.

Container Classes

Large arrays of data are ubiquitous in scientific computing. Older programming
languages such as C and FORTRAN had built in support for fixed-length arrays.
However these arrays were not allowed to grow or shrink in size, and they were not
“safe” in the sense that it was possible to accidentally over or index these arrays. The
C++ language allows the user to create user-defined array classes than can grow or shrink
in size and can be made safe. In addition, other general-purpose container classes such as
trees, lists, maps, etc. can be easily constructed in C++. Through the C++ template
mechanism these containers can hold arbitrary objects. This facilitates software re-use
and promotes more robust code.

The Standard Template Library (STL) is a C++ library of general-purpose containers
such as arrays, lists, maps, etc, and associated algorithms that operate on the containers.
This library is now standard with most commercial compilers, and free versions are
available on the Internet. Unfortunately in the early phases of the TIGER project the STL
was still not 100% standard and it was deemed too inefficient for scientific applications.
Hence, we decided to develop our own hierarchy of general-purpose container classes
and algorithms. In addition we developed some extremely useful general-purpose
container classes that are not found in the STL. Also, much effort was made to make all
of the TIGER-III container classes thread safe.

The TIGER-III Array classes are arranged into a hierarchy that uses both inheritance and
composition. The lowest level classes are the Heap array and Stack Array classes. These
classes are simple fixed-length arrays that live on the heap and stack respectively. These
arrays use the [] operator for access and thus mimic the built-in array syntax. These
arrays do check for over and under indexing. It is not intended that these classes are used
directly, rather they are used to construct other more sophisticated arrays.

The Adjustable array is an array that can grow or shrink in size automatically. Adjustable
arrays are derived from Stack array classes. These arrays also use the [] operator, but they

do not check for overflow since they are allowed to grow in size. The Adjustable array
works by keeping track of the number of items in the array. When the Adjustable array is
required to grow (either automatically or by user demand) new memory is allocated, the
data is copied from the old memory to the new memory, and the old memory is freed.
This operation of allocating and de-allocating memory has some disadvantages. First,
memory can become fragmented, which will result in the program running out of large
blocks of memory. Secondly, if data pointers outside of the array were pointing to data
inside the array, after the memory reallocation the pointers are invalid (the well-
documented dangling pointer problem). A memory pool that obtains large system blocks
of memory is used to help circumvent memory fragmentation. Adjustable arrays are
good for small (few) to medium (few hundred thousand) elements. Huge arrays should
be built using Noncontiguous arrays.

The Noncontiguous array is adjustable but items in the array never move, hence the
Noncontiguous array does not suffer from memory fragmentation or dangling pointer
syndrome. To the user, a Noncontiguous array behaves exactly like an adjustable array.
The Noncontiguous array contains within it an Adjustable array of blocks. The
Noncontiguous array works by allocating small non-contiguous blocks of memory as
needed. Additional bookkeeping is performed internally to keep track of the blocks. Due
to this bookkeeping, a Noncontiguous array is slightly less efficient than a standard
Adjustable array. The Noncontiguous array can not be found in the STL, and the

Noncontiguous array is an essential element of the TIGER-II Entity-Attribute data
structure. :

A Reference Noncontiguous array is a specialization that hides data common to all items
in a block in the block header. This is to minimize memory usage by eliminating
redundant storage of like data. In conjunction with the Memory Pool, large blocks of data
are stored at specially aligned memory locations. This allows the fixed memory of all our
Entities to be 2 pointers instead of 3, resulting in 50% savings of memory overhead.
Also, by storing extra information in the header of each block which is placed at specially
aligned memory locations, running indices can be stored. This hidden data allows us to
efficiently compute global contiguous numbers for every Mesh Entity and Attribute
across all processors storing no local data within an Entity. The use of the Reference

Noncontiguous array is an essential key to TIGER-III’s overall memory and CPU
efficiency.

A Sorted array is an array that is always kept internally sorted. The sorted array is derived
from Adjustable array. The array provides random read access but not random write
access. The only write access is an insert() method that inserts the data item in the
appropriate place using a binary search algorithm.

The Container class is a decorator class' used to add functionality to all of the above
array classes. Specifically, the Container adds relational operations to the arrays and it
facilitates the copying of data from one type of array to another type. In addition, the
Container decorator adds pack() and unpack() methods required by the communication
class.

A Registry is a Sorted array of Pairs, where a Pair consists of a Key and of a Data item.
The Pairs are sorted according to the value of the Key. Common use of a Registry is to
associate character strings or integers with pointers to functions or other objects.

A Balanced Binary Red-Black Tree (BBRBT) is a data structure where the data items live
on the “leaves” of the tree, with the leaves organized by a series of branches that split into
two and all originate from a single root. The BBRBT behaves like a Sorted array, it is the
internal implementation that is different. The Sorted array suffers from the same memory
movement problems as the Adjustable array. The BBRBT minimizes data movement,
which can be important for maintaining very large sorted containers. Insertion and
deletion of items approaches a constant time for large data sets.

An Oct Tree is a three dimensional variation of a binary tree. An Oct Tree is an ideal data
structure for storing (x,y,z) triplets. In simple terms, space is divided up into cubes and
triplets are put into the appropriate cube. Determining if a given (X,y,z) triplet exists in an
Oct Tree scales as logorithmeticaly, hence it is fairly efficient. An Oct Tree can be
memory intensive, and special care was used to implement the code in a memory
conservative fashion. The Oct Tree is an essential part of the Mesh class.

To summarize, the TIGER-III framework has several standard container classes that are
used thought the framework. These classes all use the C++ template mechanism. Much
effort went into to making these classes efficient both in terms of memory usage and in
CPU time. These container classes all use the Memory Management class and the
Monitor/Mutex class that are described below.

Miscellaneous Utility Classes

The TIGER-III framework provides some low-level utility classes. In simple terms, a
utility class is a class may be used by all the other classes and is treated as if it were an
intrinsic part of the development environment.

The String class is used to represent character strings such as “Hello, World”. Most
modern C++ compilers come with a built in String class, but the built in String class is
not particularly efficient. The TIGER-UI string class is basically an array of characters,
with some additional member functions for relational operators and type conversion

The Memory Management classes (Memory Pool, Memory Stamp, and Memory
Manager) are used to manage the allocation and de-allocation of memory and to gather
statistics on memory usage. These are low level classes are not intended to be used by the
user, instead these classes are used inside of the other TIGER-III classes such as the array
classes. The memory is allocated in huge blocks of data and is split into smaller data
chunks that are specially aligned. A user can mask the least significant bits off of the
memory and jump to that memory location that contains extra data that all items in the
Memory block share. Common uses are to store pointer addresses that every item in the

block has in common or to store running block offsets that can be used in conjunction
with an item’s raw address to obtain unique identifiers. These methods are used very
frequently throughout TIGER-III and often facilitate huge memory savings.

The Monitor, Mutex and Thread classes are for use in a multi-threaded environment.
These classes are used to create threads and lock down objects so that only one thread can
access them at a time. In simple terms, a thread is a subroutine that is running
independently and in parallel with the main program. Most modern non-scientific
applications make heavy use of multiple threads, for example in an e-commerce system
one thread may me running the graphical user interface, another thread may be writing
data to disk, while another thread may be performing data base queries. This type of
parallelism is often called task-based parallelism because each thread has a well defined
task is distinct from the tasks being performed by other threads. This is in contrast to
SPMD parallelism were each processor is performing the same task on different data.
While a small portion of the TIGER-III framework currently uses multiple threads, the
Monitor and Mutex classes were developed mostly to help enable research on multi-
threaded algorithms for use on clusters of SMP computers.

Communication Classes

The TIGER-II framework was designed for parallel execution on both shared memory
and distributed memory computers using the single-program multiple-data (SPMD)
paradigm. In this paradigm a single program is executed simultaneously on multiple
processors -and each program has direct access only to a portion of the total amount of
memory. In other words, data such as the mesh, the fields, etc. is distributed across all of
the processors. This approach is also sometimes referred to as domain decomposition.
Note that some parts of the TIGER-III framework use multiple threads of execution, this
is a different type parallelism and is discussed in another section.

In the SPMD paradigm the processors often need to exchange data. This communication
is referred to as message passing. The TIGER-III framework uses the Message Passing
Interface (MPI) library for all message passing. The MPI provides functions for sending
and receiving messages, for synchronization of processors, and for collective operations
(summation, maximum, etc.). The purpose of the TIGER-III Comm classes is twofold: 1)
to collect all MPI function calls into a single file for ease of maintainability, and 2) to
facilitate the communication of arbitrary C++ objects. The former objective is both
standard and trivial; the latter objective was non-trivial due to the fact that MPI has a C
(or FORTRAN) interface and is unaware of C++ objects. The starting of a MPI process,
synchronization, and collective operations are supported by the TIGER-III Comm class,
but since these are fairly standard operations, they will not be discussed further. The
communication of arbitrary C++ objects is discussed in more detail below.

It is important to review some basic aspects of C++ classes and objects. The basic C++
data types such as int, float, double, char, etc. are considered to be intrinsic classes. An
instance of a class is an object. The MPI library is capable of communicating these
intrinsic objects, or arrays of these objects. A user-defined class is composed of intrinsic

classes and/or other user-defined classes. The TIGER-III classes such as Entity, Attribute,
Species, etc. mentioned in other sections of this report are user-defined classes. It is these
user-defined classes that MPI does not know anything about, hence the main purpose of
the TIGER-III Comm class is to facilitate the communication of other TIGER-III classes.

It is undesirable for the TIGER-III Comm class to have detailed knowledge of the other
TIGER-1II classes; data hiding is a basic tenant of object-oriented design. If the TIGER-
III Comm classes did have detailed knowledge of the other TIGER-UI classes the
software would not be extensible or scalable. But how can the TIGER-III Comm class be
“in charge” of communicating all the various TIGER-III objects if it has no knowledge of
what is inside of these objects? The following is an example:

Consider class A which contains an int and a float, and class B which contains a string
and a pointer to an object of type A: (the following is pseudo code)

class A { class B {
int x; char name[6) = “Foo”;
float a; A *ptr_to_an_ A;

}: }:

Let’s assume that on processor 1 we have a properly initialized object of type B named
Foo, and we want to send Foo from processor 1 to processor 4. We have an instance of
the Comm class that is responsible for communicating Foo. How does the Comm object
know what parts of Foo to communicate? Should a shallow-copy (send the pointer) be
performed or a deep copy (send what the pointer points to) be performed? An additional
complication is that the MPI library cannot directly communicate objects of class A or B
even if the Comm class knew what parts to communicate. The solution to this dilemma
was to require every TIGER-III object that may be communicated to have both a pack()
and an unpack() method. These methods pack/unpack the object into/out-of a buffer. The
Comm class then sends and/or receives the buffers. This process is recursive; the
recursion terminates when the Comm object is given an intrinsic object that it knows how
to deal with. The Comm class performs the pack/unpack of intrinsic objects, since it is
not possible to endow an intrinsic class with a method.

To complete the example, the following is the sequence of events that enable the
communication of Foo from processor 1 to processor 4:

The Comm object attempts to communicate Foo, but since Foo is not an intrinsic object
the Comm class tells Foo to pack himself into a buffer; the Foo object packs the character
string name into the buffer (a character string is an intrinsic class). Foo knows that he
needs to perform a deep copy of ptr_to_an_A, so he de-references the pointer and tells
the object of type A to pack itself into the buffer; the object of type A packs the int and
the float into the buffer, as int and float are intrinsic classes; the Comm object sends the
buffer to processor 4; 5) on the receiving processor the above process is repeated in
reverse order.)

To summarize, TIGER-III objects that are to be communicated must have pack() and
unpack() methods. The Comm class uses these methods to pack and unpack the object

into/out-of a communication buffer. All communication is done using MPI_PACKED
data type. The C++ feature called template specialization is used to implement the Comm
class. The Comm class is an independent utility that can be used by other parallel
programs; it does not depend upon the rest of the TIGER-III code. The Comm class is

thread safe, which is essential if two or more threads are performing MPI
communication.

Compared to other approaches of MPI communication that use the built-in ability to
create and communicate static structured data types, the pack/unpack approach is
significantly more general at the expense of performance. The performance penalty is due
to the packing and unpacking of data into and out-of buffers. Since few data structures in
TIGER-III are static, efficient communication of static data structures was not given a
high priority. In other words the majority of TIGER-III objects may grow and shrink
during execution of the program and the above approach remains a valid communication
scheme for these objects.

Entity-Attribute Classes

The key development in TIGER-III is the creation of the Entity-Attribute library. It
provides an abstraction between objects and their type. As such, a large number of these
lightweight objects(dubbed Entities) can be created and change their type at run time. The
overhead per Entity is very low (specifically, two pointers), which allows us to model
each logical object in a system, such as a node, edge, face, cell or particle, as an Entity.
While Entities were designed to model the topological features of a mesh, there's nothing
limiting them to that role. A user could use Entities to model neurons in a neural network
for instance.

An Entity can contain one or more Attributes. As Attributes are added or subtracted the
Entity changes behavior. For example, consider an Entity that has only one Attribute, say
Material. A user can’t ask this Entity for its length because it has none. But if the user
adds an Edge Attribute at run-time and then asks for the Entity’s length he or she will
obtain the correct solution. The fixed memory overhead for an Entity is exactly two
pointers plus any local data. So a Node Entity that had a position and no other data
would have 2 pointers and 3 floats (or doubles). An Entity does not, in general, have to
change memory location even when new data is added or subtracted which changes the
Entity’s size. Of special note is that every Attribute attached to every Entity has a unique
Global IDentifier (GID) which is contiguous across all processors but costs no local
memory overhead. (There is one exception to this, all Entities owned by one processor
but referenced by other processors must store a local Global Entity Identifier GEID
number when residing on the non-owning processor). This means that if a user tags a
random set of Entities with say copper. The user can iterate over all copper Entities and
ask a given Entity what is your copper GID and get back a number that costs no local
memory. The actual overhead is one word per large group of Entities (per processor)
although each Entity has a local copper GID unique to it. How this works complicated
and will be explained later on in the discussion.

An Attribute is a class the user builds in software. Typical examples of Attribute classes
are Nodes, Materials, Boundary Conditions, Outer Surface, Topology, Fields, etc... The
user defines the data and the bookkeeping is abstracted from the user. Attributes

replicate themselves across processors without user intervention. Attributes are discussed
later.

A collection of Attributes makes up an Entity. All Entities with an identical set of
Attributes make up a Species. The user can iterate over Entities, Attributes or Species.

The data and behavior of each Entity depends on what Attributes it is tagged with. In
essence, Attributes provide type for Entities. A user can change a given Entity's data and
behavior at run time by modifying what Attributes that Entity is tagged with. Attributes
are defined by a type hierarchy, which starts with a root Attribute. Various Attributes
inherit from this root Attribute, and more Attributes can inherit from those. This is all
done at compile time though basic C++ inheritance. These Attributes (called the Type
Attributes) define the data and behavior for Entities tagged with an Attribute of that type.
Attributes that have the same class name (Type) but different data are also

“distinguishable by their Kind. So an Entity can change its behavior just by changing the
data associated with one or more of its Attributes. This happens at run-time. If an Entity
changes its local data only the behavior of the Entity is changed. If an Entity changes
data that is common to other Entities then all Entities sharing that common data will

immediately change behavior. The behavior is similar to the State design pattern
[Gamma, et. al., p. 305].

There is one instantiation of every Type Attribute that is created in the static initialization
sequence before main(). This object gives the user access to all information regarding that

Figure 1: Example Type Attribute Hierarchy

Type Attribute and the ability to create specific instances of this Type Attribute at run
time. These specific instances of Attributes called the Clone Attributes. Clone Attributes
define the value of data common to all the Entities that the Clones are tagged to. The
clones are created by a Factory [Gamma, et. al., p.107] to insure that no two clones have
the same Common Data values. Doing so keeps the number of Attributes to keep track of
to a minimum and reduces the memory overhead of the system.

The Clone Attributes can be created either though the use of an Attribute_db file or user
at run time. The Attribute_db file is just an ASCII flat text file that defines Clone
Attributes that will be used every time the user's code is run. This frees the user from
having to make numerous calls to create these common Attributes in their code. The
entries in the Attribute_db file consist of a Clone Attribute name, the name of the Type
Attribute that it is a clone of and a list of data definitions that specify the name of the data
item (which must match the name defined for that data item in the declaration of the Type
Attribute), the data type (Common, Local, Computed, etc.), and the value or function
name for that data item. The Attribute_db file should be static for a given code, as the
code will depend on these Clone Attributes having being defined before the code begins
execution. Clone Attributes can be added at run time but for convenience we allow the
rest of the software to depend on the Clones in the Attribute_db file being setup.

Figure 2: Example of Clone Attributes created from the Type Attributes.

Entities can be created or modified to have any combination of Attributes, including two
Clone Attributes of the same Type, if that Type allows it. This is useful for cases such as
the interface between two materials, where the Entity should be tagged with both
materials. This requires some special handling on the part of the programmer
implementing the physics, as the programmer can no longer just ask what Clone Attribute
of that Type the Entity has. Instead the programmer must ask for a list of Clones (which

may just be a list of one), and iterate over it. An Entity can not have more than one copy
of a Clone Attribute, as this is not necessary. If an Attribute can have multiple data
values, then that data should be stored in an array, not though multiple clones.

Attributes can have three basic types of Data: Common, Local and Computed. Common
Data is data that is defined as being the same for all Entities that have that Clone
Attribute. Local Data is data that is local to an Entity. Computed Data is, as the name
implies, computed on the fly for that Entity by a user defined function. There is a forth
data type called Local Array, which is really just a specialization of Local Data allowing
an Array of data values to be stored in each Entity with that Attribute in standard C style
(that is, accessed through the C [] operator given a pointer, and without any bounds
checking). All of these data types are specializations of At_value, which can be used by a
class as the data type when it is possible that different Clones of a given Type Attribute
may store their data differently.

Enfys in Entity Container

Figure 3: Entities with Attributes. Note that multiple Entities may point to the same set of Attributes
and that an Entity may point to multiple Clone Attributes of the same Type.

Given a large collection of Entities and their Attributes, the most common operation that
a user will want to perform is itgrating over a group of Entities with common Attributes.
For example, looping over all the Edges in a problem or looping over all the Entities

tagged with both the Type Attribute Boundary Condition which have only one up in their
Topology Attribute This is accomplished with a Filter. The user can create a Filter with a
string at run time. This allows the user to either create or hard-code a string in the code
for processing, or enter the string though a user interface at run time. That allows the user
to pick the data they want to view or manipulate it by hand without having to change a
line of code. The authors have found this feature to be one of the most useful ways to
debug the Mesh class during its creation. However, one can use the same procedure to
apply specific algorithms to specific portions of the mesh.

tall_att [] Edger&&lupcount

Figure 4: TIGER-II GUI with Filter line. This particular filter command finds all edges with 2
topological ups.

The hierarchy of all Type and Clone Attributes is the same in all processes in an MPI job.
As the Type Attributes are created at compile time and their static instantiations are
created before main() is called, these are automatically the same in all processes before
‘Communication is even initialized. Once the program has started, a specialization of
Factory called CommFactory is used to create the clones. The CommFactory will create a
unique instance of every Clone Attribute in each process.

The CommPFactory works asynchronously through the use of threads running in every
process. When a Type Attribute is initialized in a multiprocessor environment, it starts a
thread to handle the creation of its clones in that process. Then, when the user requests a
Clone of that Type Attribute, the CommPFactory first checks if it already exists in that
process. If it doesn't exist, the CommFactory requests the given Clone Attribute from a
designated process (usually process 0). This serves as a deliberate serialization so that if

two processes request the same Clone Attribute at the same time, when the designated
process is done cloning the first request, it knows there's nothing to do for the second
request and only one instance of that Clone Attribute will be created (as it should be). If
the designated process actually needs to clone the given Attribute, then a message is sent
to all other processes with the argument passed to CommFactory and the new Clone
Attribute is simultaneously created in all processes. An acknowledgement is then sent

back to the process that originated the request so that the new Clone Attribute can be
found and returned to the user.

The method described above may not work well depending on the underlying thread
implementation. The problem manifests itself as the number of Type Attributes increases.
There is one thread per Type Attribute, hence as the number of Type Attributes increases,
the number of threads to assist the cloning operation increase. These threads spend most
of their time idle, waiting for a message telling them to create a clone for the Type
Attribute they support. Some Machines, such as the SGI (IRIX 6.5.5) show no
degradation as the number of threads waiting for messages increases. Other machines
though, such as the Compaq Alpha (Digital UNIX 4.0), decrease in performance as the
number of latent threads increases. Both machines are four processor machines running
the MPICH shared memory message passing library. Hence, the threads aren't truly
latent; they're polling the MPI library to see if they have a message waiting which
requires that they lock down the MPI library as MPICH isn't thread-safe. The problem
may be solved though more careful attention to thread scheduling (right now all threads
are running with the same priority with the default scheduler), or by using a thread safe
MPI library so that the threads could perform blocking receives and hence be truly latent.
Alternatively (what may be the best fix), the architecture could be changed such that one
thread handles the cloning for all Type Attributes.

All the Entities in a program (or at least in one process) live in an Entity Container. A
given Entity is uniquely identified by its position within this container. Within a single
process, the address of that position is sufficient and is the most direct, efficient and
hence frequently used way. to access an Entity. Across all processes, Entities are assigned
GEIDs, or Global Entity IDentifiers. An Entity's GEID is it's position in the Entity
Container plus the number of Entities on processes lower in rank than the current process.
This number or address is static: no matter what operations you perform to an Entity
(such as adding or removing Attributes or changing data values), the Entity's position in
the Entity Container remains the same.

An Entity is really nothing more than a pointer to its local data. Groups of Entities that all
have the same list of Clone Attributes (and hence the same amount of local data) are
managed collectively by a Species object. Species is hidden from the user such that they
should never need to access it directly. Essentially, it provides an array for local data and
a list of pointers to the Attributes the Species represents. There is one entry in this local
data array for every Entity that is managed by a given Species with enough raw data
space to store the local data for that Entity and a pointer back to the Entity itself. This
local data space does not define the Entity, so when an Entity has one of its Attributes
added or removed, the local data space for that Entity is moved to the Species

representing the new combination of Attributes and Entity's pointer to its data is updated,
but the Entity itself doesn't move.

Enfys in Entity Container

Figure 5: Entities being managed by Species.

Species keeps two lists of Attributes: the list of Attributes that it was created with as well
as a list of Species Specific Attribute Copies. The Species Specific Attribute keeps some
information on how to access its Local Data for Entities of that Species, specifically an
offset into the local data space. The Species creates these Attribute Copies during its
creation. If an Attribute has no Local Data, and hence, no need to store an offset in order

to access all of its Data, the Species will just a pointer to the Clone Attribute that it asked
for a copy of.

Figure 6: Entity-Attribute Structure with Species Specific Attribute Copies.

Enfilys in Entity Container

Figure 7: Entity-Attribute Structure after an Entity has changed one of its Attributes.

As it is the Attribute that contains the knowledge of how to access the Local Data for a
given Entity, it is that Attribute that is called to access any of the Data that it has defined.
This is accomplished by first requesting the instance of a given Attribute for a specific
Entity. The Entity will pass this request on to its Species which then looks up the
Attribute by ID in a table and returns the pointer to the Species Specific Copy of that
Attribute. This can be done for any Clone Attribute or Type Attribute in the system. If the
Entity does not have the requested Attribute, the user will get a NULL pointer. Recall
that if the Entity has multiple Clones of a Requested Attribute, it is indeterminate which
Attribute will be returned; the user should ask for the list of those Attributes instead.
Once the user has a pointer to the appropriate Shared Specific Attribute Copy, any of that
Attribute's accessor functions may be called using the Entity as an argument. The data
accessor function can either access the data using the Entity and the stored offset, pass the
Entity to a user defined function, or ignore it and directly access the Common Data. The
procedure in the previous paragraph can be very cumbersome, especially since there are
numerous pointer de-references and casts involved. In order to spare the user from having
to repeat such a sequence needlessly and with the high potential of creating syntactic
errors in the code, the EA macro was developed. The EA macro takes two arguments: A
pointer to an Entity and the name of the Attribute Type the user would like from that
Entity. The macro expands to retrieve the correct Attribute pointer for that Entity and that
Type Attribute and allows the user to directly call the data accessor function from there.

An Entity is only owned by one process, however any other process can hold a copy of
that Entity. These Entities are called Ghost Entities. A Ghost Entity is retrieved from the

process that owns it by passing that Entity's GEID to the get_entity function. Hence, the
user must know the GEID of the Entity they want. This is typically accomplished by
virtue of having a connectivity between Entities. The Topology of a Mesh is the de facto
example of this connectivity. The get_entity function is another example of asynchronous
communication in TIGER-III. When the get_entity function is called, it first checks if the
requested Entity is already in this process. If it is not, then get_entity sends a request to
the process that owns the requested Entity (which get_entity can determine because the
GEIDs are assigned to processes in blocks. That process has a transporter thread that
receives the request and returns the list of Clone Attribute IDs that the requested Entity
has and the Local Data for that Entity. Right now the Local Data is just sent as a group of
bytes, so it will only work across homogeneous architectures within a given mpirun (as
heterogeneous architectures will likely have different sizes and alignment for the data as
well as different byte orderings). This is not a significant limitation given the lack of
heterogeneous low-latency computing clusters at this time. The process that owns the
Entity will tag that Entity with an Exists_on Attribute to denote that the requesting
process has a copy of that Entity. The Entity is received and unpacked by the requester.
When the requester unpacks the Entity, the Entity will be tagged with the Ghost Attribute
to denote that it is owned by another process.

Given the organization of Entities by Species, the implementation of the Filter class is
relatively simple. First the Filter finds the Type Attributes and Clone Attributes that
fulfill the user's request. The list of Species for each of those Attributes can be considered
to be a set. Depending on the operators specified in the filter string, the Filter will take
unions or intersections of the sets. The set of Species that remains after this operation
contains the Entities that the user wants to iterate over. The actual iteration process
hidden by the Filter is nothing more than a double loop. The outer loop over the set of
Species and the inner loop over the Entities of the current Species. The primary limitation
in this approach is that Entities can not be filtered based on their Local Data values. This
could be corrected through the use of a Visitor class that uses a Filter to get a group of

Entities which it can then iterate over, returning only the Entities that the user has
requested.

The Data for the Entities and Attributes should be the same in all processes. In order to
do this, when a Common or Computed Data is updated for a given Clone Attributes (or
one of its Species Specific Copies), a message is sent to the mass mutator (so named as it
is essentially changing the values of Attributes for all the Entities with that Attribute)
thread on a designated process (in order to create the same serialism as happens in the
Attribute cloning process) which dispatches the message to all other processes. The
message specifies the Clone Attribute to be updated, which Data is being updated and the
new Common Data value or Computed Data function. Each process will find the given
Data in the given Clone Attribute and pass it the new value or function. That Data will
get the new value or function for the Clone Attribute and all of its Species Specific
Copies.

Updating Local Data is slightly different because Common and Computed Data should
always be updated in all processes, but Local Data should only be updated when the

Entity for that Local Data is a Ghost Entity in some process. Because all Entities of a
given Species have the same Attributes, all of them will have the same Exists_on or
Ghost Attributes. So a flag is stored in the copies of Data that a Species Specific Attribute
Copy has, indicating whether or not the Entities of that Species need their Local Data
communicated to some other processes when it is updated. If this flag is not set during a
Local Data update, the new data value is pounded into the space designated by the offset
into that Entity's local data space. If the flag is set, the Exists_on or Ghost Attribute for
that Entity is found to determine what process owns that Entity. A message similar to the
one described for Common and Computed Data is created with the addition of the GEID
of the Entity in question. This message is sent to a mutator thread in the process that
owns the Entity (again, an imposed serialism is created). That process will find the given
Entity, see what processes it has an Exists_on Attribute for, and propagate the message to
those processes. The data value is then updated on all processes with that Entity
simultaneously.

The mutator thread can handle more than just updating Local Data. It also handles the
removal, addition or setting of Attributes to or from an individual Entity, or the removal
of an Entity altogether. The process is virtually identical to the process of updating Local
Data. When a user requests one of these operations and the Entity exists in another
process, a message containing the operation type, the GEID and the data needed for that
operation (such as the list of Attribute IDs to add to the Entity) is sent to the local mutator
thread. The mutator thread propagates the information out to all processes containing a
copy of that Entity and the operation is performed by all processes simultaneously.

Mesh Classes

The Mesh class has been the driving factor behind the development of the Entity-
Attribute structure. The Mesh class provides an abstraction for any Cell, Face, Edge, and
Node type topology that a physics code may want to use. The mesh is initialized with a
file that lists the mesh parts (by filename), and the type of mesh that is in the part file
(unstructured, structured, warped, etc.). These are the meshes that will be stitched
together and decomposed across processors, essentially defining the space in which the
physics code will do its calculations. The Mesh class provides an interface such that the
physics code does not need to be concerned with what type of mesh its working on, or

what the partitioning of that mesh across all the processors of a massively parallel
machine is.

A great deal of the setup for use of the meshes in this manner is performed by the TIGER
IIT pre-processor (PreTiger) and the Mesh Readers. PreTiger only needs to be run once
for a given collection of mesh parts. It will read in the mesh parts using the Mesh
Readers, partition the parts across the processors that it is running on, and write out
binary files to be used by the TIGER classes when the physics code is run. The primary
limitation that it has is that it will only partition the mesh for the number of processors
that it is running on, hence the physics code must be run on the same number of

processors. If the number of processors for a run is changed, then PreTiger must be re-run
to re-partition the mesh parts for the new number of processors.

PreTiger begins by creating a Mesh Reader for every part in the mesh parts file. The
Mesh Readers are a hierarchy of classes to handle the reading of ASCII or binary mesh
part files at various levels of abstraction. The root Mesh Reader is a virtual class that only
defines those members that are applicable to all mesh part files, such as a function to
retrieve the number of zones. Various types of abstract Mesh Type Readers, such as
Warped and Unstructured inherit from Mesh Reader to define the interface for the
instantiation of specific types of Mesh Readers, such as unstructured or warped. Using
these readers, PreTiger determines the size of each part (in number of zones) and factors
that with a weight depending on the type of mesh it is (i.e. Structured meshes have a
smaller memory footprint than unstructured, so more Structured zones can be fit on a
given processor).

Given the relative size information for each part, the parts are assigned processors: one
part may be spread across multiple processors and one processor may be assigned
multiple parts. The algorithm is designed to balance the work between processors without
splitting a part between so many processors as to unnecessarily increase the
communication throughout the system. Each processor will then process the meshes to
which it was assigned. If it is the only processor assigned to that mesh, the mesh is read
in and dumped out in binary format (for efficient reading when the physics code is
started). One binary file is created for structured meshes, three binary files are created for
unstructured meshes (one for nodes, one for cells and one for special surfaces).

If a structured mesh needs to be partitioned, a block partitioner is called. The block
partitioner algorithm recursively breaks the problem down into smaller blocks until the
number of blocks is equal to the number of processors assigned to that part. The blocks
remain roughly the same size and retain a near-optimal area to surface ratio. Tests have
shown that the block partitioner can break the problem to within 2% of the optimal
partitioning on a moderate sized part of odd dimension across an odd number of
processors. In general, the load imbalance decreases as problem size increases.

If an unstructured mesh is to be partitioned across multiple processors, those processors
create a MPI Communicator [] to talk amongst themselves. Each processor reads in a
section of the cells from the part file and the processors use the nodes in common
between cells to determine the basic connectivity of the cells. This information is put into
a graph form and passed to ParMetis[], which performs the domain decomposition on the
part and assigns what processors work on what cells. The cells are then sent to those
processors. The nodes and specials are read from the part file, again with each processor
reading just a piece of the file. Each processor then requests the nodes (and specials
associated with those nodes) from the processor that read them in, and the nodes returned
to the processors that requested them. Finally, the nodes, cells and special surfaces that
have been assigned to a given processor can all be written out to disk in their separate
binary files. This entire procedure is obviously an over-simplification. There is a lot more
book keeping involved to ascertain who read in what and where it currently is.

Furthermore, the entire procedure is multi-threaded for efficiency, for instance a

processor will request the nodes that it needs at the same time as the cells are being
written to their own binary file.

The partitioning of unstructured meshes is a late added feature to TIGER-HI and, while it
is complete, it is not yet functional due to problems with MPI communication. The
foremost problem that has been encountered is with MPI Communicators in the SGI
IRIX MPI implementation. PreTiger depends on the processes in a communicator to be
numbered from O to n-1 where n is the number of processes in that communicator{].
Instead, on the SGI they retain the same rank they have in MPI_COMM_WORLD.
Hence, if processes 2 and 4 are the two processes in a communicator, PreTiger expects
them to be numbered O and 1 for that communicator. Instead, the processes remain
numbered 2 and 4.

Once the mesh is partitioned and saved in a binary file format, the actual physics code
based on the Mesh class can be executed. The same parts file used for PreTiger is used to
initialize the mesh class. Each process sees if there's a binary file for that part created for
that process. If there's not, it can go on to the next part. If there is, then the appropriate
mesh part (unstructured, warped, etc.) is constructed.

Each node, edge, face and cell is represented by a Mesh Entity, which is a specialization
of Entity that understands mesh topology. A Mesh Entity is an Entity with the Topology
Attribute. The Topology Attribute defines the number of ups or downs a Mesh Entity has,
as well as provides a place to store those ups or downs for unstructured meshes (the ups
and downs are Calculated Data in structured meshes, hence the memory savings). The
ups and downs for unstructured meshes are stored as Local Arrays. Local Arrays can be
tricky to deal with, particularly when an item (such as an up or down) needs to be added
or removed. This is the primary motivation behind the Mesh Entity class, as it
encapsulates all this complexity from the rest of the system. All of the Mesh Entities for
all parts in the system are stored in a single Entity Container, which knows how to
manage them collectively.

All of the structured parts need to be read in and constructed first. Structured parts (both
basic and warped) are defined by their size and origin. These are stored in a Cfen_block
(Cell Face Edge Node Block Cfen_block) object which handles all the calculations for
moving through the topology of a given structured block. The Cfen_block specifies how
many Mesh Entities are required to store that part, and a block of that many Mesh
Entities is allocated from the Entity Container. Most of these Entities have no overhead
other than the basic two pointers: all of their Data is Common or Computed. The main
exception is the local space to store the positions of nodes in a warped mesh. The second
to outside layer is pseudo-unstructured, that is, it's labeled as being unstructured and it
stores the ups and downs locally. This is because the Mesh Entities on the outside layer
might already exist (for instance if two structured mesh parts connect). In this case, the
Mesh Entity isn't duplicated to maintain the structured ordering, rather the existing Mesh
Entity is used and the second to outside layer's ups or downs will point to it.

It can easily be determined if another node already exists in our problem space by placing
all of the nodes in an oct-tree. Each node is inserted into the oct-tree by position. Then,
before a new node is created, the oct-tree can be checked to see if that node already
exists. If it does, then the existing node is used. This allows meshes to be easily stitched
together such that all the mesh parts assemble into one global topology. Each node stored
in the oct-tree 1s given a tag. If the tags do not match, the nodes will be multiply inserted.
Most tags will be a default value, however coincident nodes, such as will appear on slide
surfaces or special electromagnetic boundary condition surfaces can use different tags to
create a logical boundary to the problem at that location.

Unstructured mesh parts are created by reading in all the nodes for that part, and creating
a Mesh Entity for each one that doesn't already exist. Then the cells are read in, a Mesh
Entity is created for each one, and all the nodes for that cell are located. Any edges or
faces needed to describe that cell that don't already exist are created and the nodes, edges,
faces and cell are connected together through the addition of the respective ups and
downs.

Figure 7: Two mesh parts (one with two cells, one with one cell) loaded in together and treated as a
single mesh.

Once all the mesh parts are read in and constructed, this process has all the Mesh Entities
for which it handles the physics. However, physics doesn't conveniently stop at the
process boundaries. The user needs to be able to access and update Mesh Entities that are
topologically adjacent to the ones controlled by this process. Hence, once local mesh
construction is complete, global mesh construction takes place. First, the global problem
space is broken up into sectors. Each process enumerates what sectors it has nodes in

though the use of the oct-tree. This list is sent to a designated process (usually 0) which
returns a list of the processes this process shares sectors with. This is the neighbor list for
this process, to first order. The outer layer of nodes is sent and received from every
process in that neighbor list. Ownership is determined for each node that is shared with
another process. Specifically, the process with the highest rank that has a node owns it.
The node is tagged as a Ghost node in all other processes. This means that the process
that is highest in rank will own its entire outer surface, whereas process 0. will only own
any part of the outer surface that forms the outside boundary to the problem. The
ownership of edges and faces on the outside surface can be similarly determined,
however those Mesh Entities only need to be sent to the processes that have one of the
nodes they connect to (as determined in the previous step). Finally, the ups, downs and
any special Attributes are consolidated in the process that owns each Mesh Entity on the
outer surface. This information is passed to the processes that store those Mesh Entities
as ghosts.

The ups and downs are usually stored as Mesh Entity pointers. This presents a problem if
a Mesh Entity in this process refers to Mesh Entities of which there are not copies in this
process. In that case, the GEID for the Mesh Entity is stored instead. This creates a new
problem: there may not be a discernible difference between GEIDs and Mesh Entity
pointers. Hence, instead of mixing the two, a Mesh Entity either has Mesh Entity pointers
for all of its ups and downs, or it has GEIDs for all of its ups and downs. The former is
either a Mesh Entity that is owned in this process, or a Ghost Mesh Entity. The latter is
referred to as a Phantom Mesh Entity (as in a Mesh Entity that's not really there). The
first time a phantom's ups or downs are accessed, all of its GEIDs will be converted into
pointers and it will become a normal Ghost Mesh Entity. The resulting mesh in any given
process will be surrounded by a layer of Ghost Mesh Entities of arbitrary thickness. The
outer most layer stored in any process will consist of Phantom Mesh Entities. This
excludes the true outer boundary of the problem, of course. The main advantage of this
approach is that it allows the physics code to access zones owned by other processes
arbitrarily. Some codes only require a single layer of ghost zones. Others have
complicated stencils that may go five ghost zones deep in places. Regardless, the user has
been relieved of the burden of finding, loading and managing those ghost zones.

Summary
Our Experiences using C++

In summary, we have learned much during this investigation. There are many
challenges to using object-oriented software techniques in scientific settings. While we
believe the benefits still far outweigh the limitations. The following three paragraphs
describe some general limitations we have found using C4++ on the project. - The
comments are specifically directed to our experiences on this project trying to use C++
for a specialized high-performance scientific applications.

We spent too much time wrestling with C++ compiler deficiencies.

- lack of ANSI standard C++ implementations (This has improved
significantly over the last 3 years), especially full template
support, member template functions

We wrestled too much with C++ syntax and performance issues. Many times
throughout the project we would come up with a potentially acceptable design for a given
set of classes but the implementation was very difficult. Often the most elegant solution
was too liberal in its use of virtual pointers. However, virtual pointers are expensive both
in memory and CPU usage. The overhead of a virtual pointer is not limited to the virtual
call itself but also limits the compiler’s ability to inline and optimize. First
implementations could be 5 times slower and use significantly more memory. These
inefficiencies by themselves might be acceptable but typically grew slowly to
unacceptable levels.

A good deal effort was expended on the project to trying to make Entities abstract.
Having Flyweight [Gamma, et. al., p. 195] objects is very general and allows a great deal
for a great flexibility. Moving the abstractions up to deal with collections of items and the
management of containers reduces the abstraction performance penalty significantly.
TIGER-I implemented a series of container classes and management classes that
manipulated data structures consisting of large sets of raw data. TIGER-II and TIGER-III
added the capability of abstracting at a lower level. Every Node, Edge, Face, Cell in the
entire program could be a real object. This approach gave us a great deal of object-
oriented freedom but also significantly increased the number of performance and
implementation issues we had to address.

One of the ways we were able to improve efficiency was by doing much of the objected-
oriented setup during the initialization phase. This helped performance but forced many
of our setup operations to occur before main() was called. Several man-months on the
project were expended trying to enforce a proper static initialization of global objects
across multiple file units. We ended up having to develop a modified Singleton design
pattern [Gamma, et. al., p. 127] where we wrapped the initialization of static data within a
member functions. We still need to be very careful in our linking phase when we create a
library. Our solution appears to work for on native SGI and DEC-Alpha clusters
compilers, and g++ and KCC (Kuck and Associates) on the SGI, DEC, and ASCI Blue
(IBM SP-2) platforms. (latest current versions).

In retrospect:

We had 3 major design cycles in the project. At the end of TIGER-1 we were very
happy with the accomplishments. We were able to test our abstractions out by building
full working code capable of modeling a kicker structure beyond what could be done
prior to the project. It was our prototype version and we knew we could do even better

with our next iteration. We were also pleased with the progress we were making during
the development of the TIGER-II version. In fact, originally TIGER-II was to be our
fully developed final version. However, as we added more and more capabilities the
complexity of our implementation increased significantly. First we added unstructured
grids, then the capability to have multiple unstructured grids, then the ability to have
structured grids, then the capability to automatically stitch arbitrary structured and
unstructured grids together, then the ability to have extruded meshes, then the ability to
have revolved meshes, and finally the ability to have any number of any structured,
warped, extruded, revolved, or unstructured meshes together. The user interface was still
very clean and the bookkeeping details were hidden behind the interface. The
programmer was successfully insulated from many of the bookkeeping details we were
trying to abstract away. During the development of TIGER-II we also began to test the
massively parallel abstractions out. TIGER-II's parallel implementation was only
partially completed. It worked for unstructured but needed to be extended for hybrid
meshes. TIGER-II's parallel implementation also relied on a serial pre-processor that
read in the mesh on a single processor and then called the mesh partitioner.

During the second quarter of FY99, almost 2.5 years into the project we came to a
decision point. We were achieving our milestones and were happy with our successes.
However, although we successfully implemented hybrid mesh abstractions that provided
a simple interface to the programmer, hiding virtually all the details, the complexity
behind the interface raised concerns about the long term maintainability, flexibility, and
performance of our libraries. On one hand, future physics packages would be spared
much of this complexity, and after all, the insulation of the physics from the bookkeeping
was what we were trying to achieve. There would hopefully be many physics packages
but we only needed one bookkeeping package and this was essentially written. On the
other hand, through our research we discovered ways to significantly reduce the
complexity of our implementation and ways to further improve the memory overhead and
flexibility of our interface.

A major redesign and implementation of our abstractions would be a huge undertaking so
late in the project even if we used the latest in modern software techniques. However, the
expected increase in capability, flexibility, maintainability, and performance, as well as
the expected decrease in complexity would dramatically improve this research effort. It
was a very tough decision to make.

There was one more factor influenced the decision making process. At the same time we
were also trying to incorporate new physics into the full working TIGER-I version of the
code. The new physics was far from trivial. We were trying to add correction terms to
sources to the DSI algorithm. The correction terms were required to preserve divergence
and prevent change build-ups that often lead to instabilities. In very simple terms, the
solution to adding the correction terms involved turning the DSI algorithm inside out.
This was a good test for the Mesh abstractions. Previously we tested the abstractions
knowing exactly what physics we were going to add next. This test would in some sense
test our ability to add new physics. The addition of the current sources was not part of
this LDRD project but a Techbase project. The FY99 Techbase report documents that

effort []. What is relevant to this project is the lessons we learned testing out our
prototype abstractions in a realistic setting.

We successfully added the new physics much faster than would have previously been
possible, modifying the original FORTRAN version; yet we desired the process to be
even simpler. We had long since improved the interface and hid many more of the
details in TIGER-II version compared to the earlier TIGER-I version. However, the
overall process was still dominated by bookkeeping details. The actual physics addition
was relatively straightforward. The difficulty was that the algorithi forced us to iterate
through the mesh in a very indirect manner. So during the physics addition, we had to
get our hands dirty and go into the lower level bookkeeping aspects of the code. This is
exactly what we were trying to prevent. The experience raised several questions. Was
this example a typical or atypical situation? How often would we truly be successful in
insulating the physics for the bookkeeping?

The decision was made to build a third version called TIGER-III. Having a third version
start so late in the project meant that we would not have the time to put new physics into
the last version to demonstrate its capabilities. We felt however that the long-term future
of our research would be better served by building a better set of abstractions rather than
finishing and demonstrating the TIGER-II version.

TIGER-III is in its final stages and has no physics in it yet. However, we have
successfully moved beyond many of the difficulties encountered in earlier versions. It is
our intention to finish and then demonstrate the object-oriented research behind TIGER-
111 in future publications. TIGER-III's core libraries are currently being used in another
Mesh generation LDRD project.

! Design Patterns: Elements of Reusable Object-Oriented Software; Gamma, Helm, Johnson & Vlissides;
Addison Wesley, 1994, pp. 1-395.

zow@congo.linl.go

SPARCprinter
Tue Feb 15 14:14:32 2000 A ppendey Y/

Needs
\w‘ Z (/L\ >< CONIUERS \,ew‘.

This 19 not Sov<ce Lode‘

Thm ace V10 CO»/\SK{‘”N)}‘S [?‘k'@
\ 5@@3& > & ‘lg(f\'}‘” @(chn]"1\01’]‘ £ S

S

D Slec s

e - -

Contents

Contents

What’s in Array. H? — it iei e

1.2

Stack_Array — The stack array class provides an erroy of the
given type and size to its children
1.21 operator() — Get a reference to the element at a

GIUEn POSIEION e

1.3 Heap_Array — An array located in the heap
1.3.5 operator() — Get a reference to the element at a

GIUET POSISLION ... oot

1.4 Adjustable_Array — An eztention of the Heap_Array that al-
lows the size and capacity to be dynamically adjusted

1.5 Block_header — Block_header is a struct that contains dote
at top of every block in a Reference_Ne_ Array

1.6 Block — The Block class primary purpose is to encapulate a
Block_header and its associated data

1.7 Reference Nc_Array — Reference_Nc_Array (R.a) is an of ar-
ray of Blocks ..o

1.8 Sorted_Array — An extention to Adjustable_Array that main-
tains the elements in sorted order resulting in log2(n) searches

for a specific element il

1.8.1 OPerator() ..o

1.9 Container — Container is a decorator class that defines com-
mon operations for any container,
Gid — Integer large enough to provide a unique identifier
for a large number of objects across a large number of pro-
CEBBOTS < v v evemna et asensoeeeaneaesnereseeeaneaanaanoannnens
What’s in Comm.H?co i,
3.1 Communicator — Communicator class to define more com-
plicated topologies than just MPI.COMM_WORLD

3.2 Comm — Comm classoioiiiiiin...
3.3 Message — Base class Message
3.4 Send -— Send buffer N
34.2 operator() — Buffer set-up

" 3.5 Recv — Receive buffer ... -..l
cloner — Function to run in thread to handle cloning on all
e

10

14

17

22

23

25

28

30

31

65

This page has been automatically generated with DOC++
DOC++ s @1985 by Roland Wunderling
a

ke Zockler

Contents

5 CommbFactory — CommFactory is an extention to Factory
that ensures that the clone of the given object is cloned
across all processors such that it exists uniquely on each
PTOCESIOT - vttt et tenetanneoneseeinenensesnannannnnnns 66

6 cloner — This is the function used in the thread that Comm-
Factory::initialize() spins offooiiiiiiiiaian. 68

7 Free_list — Free_list is a small helper class that can be used
with Container classes that have itemns large enough to store
at least a pointer to another ttemccoiit 69
What’s in Memory pool.H? i, 73
8.1 Prevnext — Prev.next struct is a Memory_stamp number

with prev, next pointers to create a doublely linked list 74
8.2 Memory stamp — The Memory_stamp class manaeges the

writing and reading of the memory stamp for the Memory

2 75
8.3 Sys_block — Sys_block struct is for use as a simple linked list

inside the Memory_pool class 79
8.4 Memory_pool —

Memory_pool is a power of 2 queue memory allocator thal pro-

vides memory always aligned to the requested size 80

9 Memory_manager — Memory management class 83

10 Monitor — This allows us to track useage of a critical sec-
tion and guarentee exclusive access when needed 86

11 Static — If we have threads then the word ”Static” will be
7 7 else it will be static” it 88

12 Mutex — Provide a basic thread locking mechanism 89

13 What’sin Oct_tree. H?ciiiiiiiiiniiiiiiiiiiriennnnee. 90
13.1 Oct_data — Oct_date a union of various pointer types 90
13.2 Oct_tree —

The Oct_tree class partitions 3-D space into guantized bins to
enable quick searches that have the traditional time vs memory
Eade-0fF oo 91
14 What'sin Rbtree.Hiiiiiiiiiiiiiiiiiirienenneann. 96
141 Rb_data — Rb_data class holds the date for a given entry in
@ R ATee ..o e e 96
14.2 Rb_tree —
The Rb_tree red black tree class is meant to hold large (many
hundreds to billions) of data items 98
This page has been automatically generated with DOC+4 2

DOC4H+ is (D195 by Roland Wunderling

Malte Zockler

Contents

15 Reference — This creates a reference (€64) to T data that is
usually newedvneniiiiiiii i et 101
16 What’s in Registry.HT «.vueereerrerreeeeseeiaeaanananannns 102
16.1 Key.data — The Key_data<Key,Data> class concatenates
Key and Data into a single structure where the comparison
operators are based soley on the Key 102
16.2 Registry — The Registry class allows insertion end removal
of data based on a key that is stored with the data 104
16.2.3 operator() — Get a reference to the i’th data value
MEhe GTTay - . e 106
17 RetrieverTask — Reitriever task enumeration defininy types
of tasks currently supported by the Retriever class 108
18 Retriever — The following class is a quick attempt at a Re-
triever classoiiiieiiii i i i e 109
19 RunTime — Times a program (or anything else you desire) 112
20 What’s in Sparse_matrix.H?ot 113
20.1 Sparse_matrix_row — The Sparse_matriz_row is a decorated
Sorted_Array container that provides a few additional services 113
20.2 Sparse_matrix — The Sparse_matriz is a simple convenience
class for holding entries in a sparse matric 114
21 Sstring.H — . i i e it ie e 117
22 Sstring — -
The Sstring class allows us to convert between various data
types in addition to the usual string class utilities 118
23 operator>> — The following definitions are defined in
L 7Y T 123
24 Sbint — Typedef abstracting what the Proc_dispenser,
Block_index_mapper, and reader classes think a large Inte-
TRl 4YPE 18 oot et et e 124
25 What’s in Utilities.H? i iiiiiiiiiiiinrnnnnnn. 125
Class Graphciiiiiiiiiiii it iiiaiiannrrantereenananes 127
This page has been automatically generated with DOC++
DOC++ is (©1995 by Roland Wunderling 3

Malte Zockler

1 What’s in Array.H?

1

What’s in Array.H?

Names

typedef unsigned int
Index unsigned indez into array typedef

typedef unsigned int
SIndex signed index typedef wused for
pointer differences

1.1 extern Monitor
stack_monitor Provides a monitor to all
Stack_Arrays, regardless of
their templated type 5
1.2 template < class Type, Index SIZE> class
Stack_Array The stack array class provides an
array of the given type and size to
its children 6
1.3 template <class Type> class
Heap_Array An array located in the heap 10
1.4 template <class Type> class
Adjustable_Array : public Heap_Array<Type>
An extention of the Heap_Array
that allows the size and capacity
to be dynamically adjusted 17
1.5 template <class Hidden_Data> struct
Block_header Block_header is a struct that con-
tains date ot top of every block in
a Reference Nc_Array 22
1.6 template <class Type, class Hidden_Data> class
Block The Block class primary purpose
is to encapulate o Block_header
and its associated data 23
1.7 template <class Type, class Hidden_Data> class
Reference Nc_Array
Reference_Nc_Array (R_a) is an of
array of Blocks 25
18 template <class Type> class
This page has been automatically generated with DOC 4+ 4

DOC++ is ©1995 by Roland Wunderling

Malte Zickler

1 What’s in Array.H?

Sorted_Array : public Adjustable_Array<Type>
An extention to Adjustable_Array
that maintains the elements in
sorted order resulting in log2(n)
searches for a specific element .. 28

19 template <class Type, class Array> class
Container : public Array
Container is a decorator class
that defines common operations
for any container 31

These array classes provide us with more safety and flexibility than the stan-
dard array operators. Safety is provided through such means as range checking
and flexibilty from adjustable arrays. There is negligable speed loss compared
with C arrays. We rely on templates heavily due to performance concerns. At
present there are no virtual member functions except for the destructors.

Currently the best performance is achieved by inlining a vast majority of the
Array member functions. Even larger sized member functions are sometimes
inlined if they are:

1) very heavily used,
2) not inlined at many places,
3) tested (in a very limited sense) to improve performance.

Obviously testing performance is compilier, system, and version dependent.
It is expected that this will change with time. Unfortunately, overall application
performance can still change by several hundred percent by changing inlines of
the Array member functions.

Maybe we could look at inlining and performance in a systematic way in the
future. For now we are just doing simple, limited in scope sanity checks.

1.1

extern Monitor stack_monitor

Provides a monitor to all Stack_Arrays, regardless of their templated type

L]

This page has been automatically generated with DOC++

DOC++ is @©1995 by Roland Wunderling 5
Malte Zickler

1 What'’s in Array.H?

Provides a monitor to all Stack_Arrays, regardless of their templated type.
This has been done to minimize Stack.Array’s memory useage. Global variables
increase program complexity, and therefore should be avoided, however this one
is necessesary to keep a reasonable memory footprint.

1.2

template < class Type, Index SIZE> class Stack_Array

The stack array class provides an array of the given type and size to its
children

Public Members
Stack_Array (Index)
The constructor allows us to track
stack memory useage.

“Stack_Array () The destructor allows us to track
stack memory useage.

Monitor* monitor () Get a monitor to protect array
when multiple threads are in use

1.2.1 inline Type&
operator() (const Index index)
Get a reference to the element at
a given position 8

1.2.2 inline Type&
ref (const Index index)
Get a reference, as in operator()
(so this needs to be protected in the
same way), but fast like operator[]
(no resizing) 8

1.2.3 inline const Type&
operator(] (const Index index) const
Find the element at the given in-
dex, just like a standard C array
9
inline void :
update (const Index position, const Type& item)
Update the element at the given
position to the given value.

inline void

This page has been automatically genesated with DOC++

DOC++ is (©1995 by Roland Wunderling 6
Malte Zockler

1 What’s in Array.H?

insert (const Index position, const Type& item)
Update the element at the given
position to the given value.

1.2.4 const Type&
data (const Index i) const
Provides uniform interface for ar-
ray classes to access data_ 9
1.2.5 Type&k data (const Index i)
Provides uniform interface for ar-
ray classes to access data_ 9
1.2.6 const Type*
data () const ...l 9
1.2.7 Type* data () = e 10
Index capacity () const Return the capacity of this array.
Index capacity (Index) const
Return the capacity of this arroy
regardless of index
Index size () const Return the size of this array.
Index size (Index) Return the size of this erray re-
gardless of index
void sort () Sort this array.
Index find (const Type& item) const
This function is guaranteed to find
the item you are looking for, or it
will die, so only call it when you
know the item is in the array
1.2.8 Index find_position (const Type& item) const
Finds the position that the given
item is at or should be at 10
Index index (Type * address) const
Find the position in the array
gwen the address.
template <class Rhs_type> inline void
equal {const Rhs_type& rhs)
Essentially a templatized opera-
tor= (NOT ==) used by opera-
tor= in Container
inline Stack_Array <Type, SIZE> &
This page has been automatically generated with DOC-+-+ 7

DOC++ is (©1995 by Roland Wundeiling.

Malte Zockler

1 What’s in Array.H?

operator= (const Stack_Array<Type, SIZE>& sa)
Equals operator. For completness
and lo remove compilier warnings

inline void
relocate (Stack_Array<Type, SIZE>*)
Classed when a relocation of array
has occurred.

Protected Members

1.29 void set_size (const Index sz)
Set the size of array 10

The stack array class provides an array of the given type and size to its children.
This data will be on the stack provided it isn’t too large and is part of a static
or automatic (not new’ed) object.

1.2.1

inline Type& operator() (const Index index)

Get o reference to the element at a given position

Get a reference to the element at a given position. Will increase the size and
capacity of the array as necessasary. Not thread-safe - be sure to increment the
monitor before use (and decrease it when you’re done).

1.2.2

inline Type& ref (const Index index)

Get a reference, as in operator() (so this needs to be protected in the same
woy), but fast like operator[] (no resizing)

Get a reference, as in operator() (so this needs to be protected in the same way),
but fast like operator|] (no resizing). Not that any of that matters for Stack
Array.

This page has been automatically generated with DOC+-+

DOC++is (11995 by Roland Wunderling 8
Malte Zockler

1 What’s in Array.H?

1.2.3

inline const Type& operator|[] (const Index index) const

Find the element at the given index, just like a standard C array

Return Value: s A constant reference to the element.

1.2.4

const Typed& data (const Index i) const

Provides uniform interface for array classes to access data_

Provides uniform interface for array classes to access data_. Not thread safe:
increment monitor before use.

1.2.5

Type& data (const Index i)

Provides uniform interface for array classes to access data.

Provides uniform interface for array classes to access data_. Not thread safe:
increment monitor before use.

1.2.6

const Type* data () const

Return Value: s a pointer to beginning of valid data_ address space.
Not thead safe.

This page has been automatically genesated with DOC++

DOC++ is (©1995 by Roland YWunderling 9
Malte Zéckler

1 What's in Array.H?

1.2.7

Type* data ()

Return Value: s a pointer to beginning of valid data_ address space.
Not thead safe.

1.2.8

Index find_position (const Type& item) const

Finds the position that the given item is at or should be at

Finds the position that the given item is at or should be at. It will die if the
item is not in the array and there is not room for it; however, as Stack_Arrays
have no concept of size vs. capacity, it acts the same as find() .

1.2.9

void set_size (const Index sz)

Set the size of array

Set the size of array. This member function is provided only to allow for a
uniformity among other types of arrays. An assert failure occurs if user actually
trys to change size of an Stack array.

1.3

template <class Type> class Heap_Array

An array located in the heap

This page has been automatically generated with DOC+ -+

10

DOC++ is 1995 by Roland Wunderling
Malte Zsckler

1 What'’s in Array.H?

Inheritance

1.3
Heap._Array

L_) 1.4
Adjustable_Array

Public Members
1.3.3 Heap_Array () Default constructor 14
Heap_Array (Index n)

Construct a heap array of the
given size.

Heap_Array (const Heap_Array<Type> &s)
Copy constructor.

Monitor* monitor () Get o monitor to protecl array
when multiple threads are in use

Index capacity () const Get the array’s capacity
Index capacity (Index) Get the array’s capacity
Index size () const Get the array’s size

1.3.4 inline Index
size (const Index sz)
Set the number of used elements in
this Array 14

1.3.5 inline Type&
operator() (const Index index)
Get a reference to the element at
a given posistion e 14

inline Type&
ref (const Index index)
Get a reference, as in operator()
(so this needs to be protected in the
same way), but fast like operator(]
(no resizing)

1.3.6 inline const Type&

This page has been automatically generated with DOC+4

DOC++ is 1995 by Roland Wunderling 11
Malte Zockier

1 What’s in Array.H?

1.3.7

1.3.8

1.3.9

operator{] (const Index index) const
Find the element at the given in-
dex, just like a standard C' array
15
inline void
update (const Index position, const Type& item)
Update the element at the given
position to the given value.
inline void
insert {const Index position, const Type& item)
Insert the given value at the given
POSILION ..ot

Index find (const Type& item) const
This function is guaranteed to find
the item you are looking for, or it
will die, so only call it when you
know the item is in the erray

Index find_position (const Type& item) const
Finds the position that the given
item is af or should be at

Index find ordered_position (const Type& item) const
Finds the ordered position an item
should be located at if it were in-
serted in arTQY ...,

void sort () Sort this arroy.

Index index (Type * address) const
Find the position in the array
given the address.

template <class Rhs_type> inline void
equal (const Rhs_type& rhs)
Essentially a templatized opera-
tor= (NOT ==} used by opera-
tor= in Container
inline Heap_Array <Type> &
operator= (const Heap_Array<Type>& ha)
Equals operator. For completness
and to remove compilier warnings

inline void

15

15

16

This page has been automatically generated with DOC++
DOC+-+ is (91995 by Roland Wunderling

Malte Z5ckler

12

1 What’s in Array.H?

relocate (Heap_Array<Type>*)
Called when o relocation of array
has occurred.

“Heap_Array () Destructor

Protected Members

1.3.1

1.3.2

Type* data._ Pointer to beginning of actual data

Index size_ The size of the array the user
presently has access to

Index capacity._ The actuel memory cepacity this
array owns
Monitor monitor_ Monitor for threading

inline void
set_size (const Index sz)
Set the size of the array (capacity
will change only if needed)

Type* data () Return handle to data

const Type*
data () const Return const handle to data

Type& data (const Index i)
Return handle to data position i

const Type&
data (const Index i) const
Return const handle to data posi-
tion i
inline Type*
new_memory {const size.t n_ele)
Gets memory from the memory
manager and calls defoult con-
structor for each newed element

_ 16
inline " void
delete_memory (Type *old, const size_t n_ele)
Release memory back to memory
manager calling default destructor
for each deleted element

An array located in the heap. Also known as Fixed Array as the capacity is

This page has been automatically generated with DOC++
DOC++ is ©1995 by Roland Wunderling

Malte Zockles

13

1 What’s in Array.H?

fixed. By default the size is set to be the same as the capacity, but the user can
set it to be anything from 0 -> capacity.

1.3.3

Heap_Array ()

Default constructor

Default constructor. Intentionally does nothing overriding the compilier gener-
ated default constructor.

1.3.4

inline Index size (const Index sz)

Set the number of used elements in this Array

Set the number of used elements in this Array. Heap_Array (F_a) is fixed in
capacity, but the size is adjustable.

1.3.5

inline Type& operator() (const Index index)

Get a reference to the element at o given posistion

Get a reference to the element at a given posistion. Will increase the size of the
array as necessasary. Not thread-safe. Be sure to incriment monitor before use
and decriment it when you’re done.

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling 14
Malte Zsckler

1 What’s in Array.H?

1.3.6

inline const Type& operator|[] (const Index index) const

Find the element at the given indezx, just like a standard C array

Return Value: s A constant reference to the element.

1.3.7

inline void insert (const Index position, const Type&

item)

Insert the given value at the given posilion

Insert the given value at the given position. This will increase the size of the
array if necessary.

1.3.8

Index find_position (const Type& item) const

Finds the position that the given item is at or should be at

Finds the position that the given item is at or should be at. It will die if the
item is not in the array and there is not room for it.

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Waunderling 15
Malte Zockler

1 What’s in Array.H?

1.3.9

Index find_ordered_position (const Type& item) const

Finds the ordered position an item should be located al if it were inserted in
array

Finds the ordered position an item should be located at if it were inserted in
array. The search is sequential from the beginning of the array. Note that the
search item will return the last valid position where all items are <= to the item.

1.3.1

inline Type* new_memory (const size_t n_ele)

Gets memory from the memory manager and calls default constructor for each
newed element

Gets memory from the memory manager and calls default constructor for each
newed element. Unless overloaded, this member function provides a single place
where memory for derived classes is retrieved by the memory manager. Changes
to this member function must be tied to changes in delete_memory member
function.

1.3.2

inline void delete_memory (Type *old, const size_t n_ele)

Release memory back to memory maneger calling default destructor for each
deleted element

Release memory back to memory manager calling default destructor for each
deleted element. Unless overloaded, this member function provides a single
place where memory for derived classes is released back to the memory man-
ager. Changes to this member function must be tied to changes in new_memory
member function.

This page has been automatically generated with DOC++

DOC++is ©1995 by Roland Wunderling 16
Malte Zockler

What’s in Array.H?

1.4

template <class Type> class Adjustable_Array : public
Heap_Array<Type>

An extention of the Heap_Array that allows the size and capacity to be

Inheritance

1.3

dynamically adjusted

Heap_Array

1.4

H

Adjustable_Array

L

Sorted _Array

1.8

Public Members

Adjustable_Array (const Index n)
Construct an adjustable array of
the given size

Adjustable_Array (const Adjustable Array<Type>
&s)

Copy counstructor.

1.4.3 inline Type& operator
() (const Index 1) Not thread-safe 19
144 inline void
insert (const Index i, const Type& item)
Insert the given value at the given
POSHION ... e 20
1.4.5 inline void
insert (const Index i, const Type& item,
const Index new_capacity)
Set the capacity of the array to the
given value and insert the given
value at the given position 20
14.6 inline void
This page has been automatically generated with DOC++
DOCH+ is (1995 by Roland Wunderling 17

Malte Zockler

1 What’s in Array.H?

insert (const Type& item)
Insert the given itemn in the last
position in the array, increasing

the size of the array by one 20
inline void
last (const Type& item)
Insert the given item in the last
position in the arrey, increasing
the size of the array by one
inline Index
size (const Index n)
Set the size of the array to the
given value.
Index size () const Get the size of the array.
inline Index
capacity (const Index new_capacity)
Set the capacity of the array to the
given value.
Index capacity () const Get the array’s capacity
template <class Rhs_type> inline void
equal (const Rhs_type& rhs)
Essentially o templatized opera-
tor= (NOT ==) used by opero-
tor=in Container
inline Type*
intersection (const Heap_Array<Type> &a)
Find the first intersection element
between this array and a
inline void
intersection (const Heap_Array<Type> &a,
const Adjustable_Array<Type> &b)
Fill array b with the entire inter-
section of elements between this &
a.
1.4.7 inline void _
merge (const Heap_Array<Type> &a,
const Adjustable_Array<Type> &b)
Merge this array with o and place
the union array in b:...... 21
inline void
This page has been automatically generated with DOC+4+ 18

DOC++ is (©1995 by Roland Wunderling

Malte Zickler

1 What’s in Array.H?7

push (const Type&)
Push item on array in conven-
tional stack fashion
inline void
pop () Pop item on array in conventional
stack fashion
inline Type
top () Take the last item off the array in
conventionel stack fashion
inline Adjustable_Array <Type> &
operator= (const Adjustable_Array<Type>& aa)
Equels operator. For completness
and to remove compilier warnings

1.4.8 ~Adjustable_Array ()
Default destructor 21

Protected Members
1.4.1 inline void
set_size (const Index n)
Sets the size of the array to the
given value, increasing the capac-
ity if necessasary 21
1.4.2 inline void
set_capacity (const Index new_capacity)

Sets the capacity of the array to
the given value 22

1.4.3

inline Type& operator {) (const Index i)

Not thread-safe

Not thread-safe. Use the monitor to protect yourself by locking it down, as it
may call set_capacity.

This page has been automatically generated with DOC 4+

DOC++ is 1995 by Roland Wunderling 19
Mahte Zockier

1 What’s in Array.H?

1.4.4

inline void insert (const Index i, const Type& item)

Insert the given value at the given position

Insert the given value at the given position. This will increase the size and
capacity of the array if necessasary.

1.4.5

inline void insert (const Index i, const Type& item, const

Index new_capacity)

Set the capacity of the erray to the given value and insert the given value at
the given position

Set the capacity of the array to the given value and insert the given value
at the given position. This will increase the size and capacity of the array if
necessasary.

1.4.6

inline void insert (const Type& item)

Insert the given item in the last position in the array, increasing the size of the
array by one

Insert the given item in the last position in the array, increasing the size of the
array by one. This member function is eqivalent to last() and is provided for
seamless usage Adjustable and Sorted Arrays. Note that although syntax is the
same between Adjustable and Sorted Arrays the behavior is markedly different.
This routine will put the item in the list regardless of whether it already exists.

This page has been automatically genesated with DOC++

DOC++ is 21995 by Roland Wunderling 20
Malte Zckler

1 What’s in Array.H?

1.4.7

inline void merge (const Heap_Array<Type> &a, const

Adjustable_Array<Type> &b)

Merge this array with a and place the union array in b

Merge this array with a and place the union array in b. Note b is an Adjustable

array

1.4.8

~Adjustable_Array ()

Default destructor

Default destructor. Deliberately not virtual. Does nothing, Heap_Array’s de-

structor does the work.

1.4.1

inline void set_size (const Index n)

Sets the size of the array to the given value, increasing the cepacity if
necessasary

Sets the size of the array to the given value, increasing the capacity if neces-
sasary. Not thread safe: designed to be called from a member function that

already has the array locked down.

This page has been automatically generated with DOC++ 21

DOC++ is 1995 by Roland Wunderling
Malte Zickler

1 What’s in Array.H?

1.4.2

inline void set_capacity (const Index new_capacity)

Sets the capacity of the array to the given value

Sets the capacity of the array to the given value. Not thread safe: designed to
be called from a member function that already has the array locked down.

1.5

template <class Hidden_Data> struct Block_header

Block_hender is a struct that contains data al top of every block in a

Reference Nc_Array
Members

void* reference_ reference tag used by the Refer-
ence_Nc_Array user MUST be first
item in the header so mod to ad-
dress operations work

Index running_index running index of how many ele-
ments preceed this block

Hidden_Data

user_data_ User’s hidden data that is packed
into top of every block

1.5.1 long double
first_data We don’t know at compile time
what the alignment of the data is
so we will use a safe long double 23

Block_header () Default constructor

Block_header (const Block_header<Hidden Data>&
bh)
Copy constructor. For complet-
ness and to remove compilier
warnings

size_t header _offset () const

This page bas been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling 22
Malte Zockler

1 What’s in Array.H?

Return the required size in biyes of
the block header data

inline Block header <Hidden_Data> &
operator= (const Block header<Hidden Data>&
rhs)
Equals operator. For completness
and to remove compilier warnings

Block_header is a struct that contains data at top of every block in a Refer-
ence_Nc_Array. The primary reason for this struct is to let the system determine
the address of first_data. This alleviates a fair amount of pointer arithmetic.
The Block header stores a reference pointer guaranted to be the first data item
so that address masking can be used for quick access. The header also stores a
running index of how many items proceed this block an an area for user data.
This could be a nested class but alas some compiliers are still behind the times.

1.5.1

long double first_data

We don’t know at compile time what the alignment of the data is so we will
use 6 safe long double

We don’t know at compile time what the alignment of the data is so we will use

a safe long double. first_data is not really used other that to take its address
for alignment calculations.

1.6

template <class Type, class Hidden_Data> class Block

The Block class primary purpose is to encapulate a Block_header and its
associated data

This page has been automatically generated with DOC++

DOC++ is (21995 by Raland Wunderling 23
Malte Zockler

1 What’s in Array.H?

Public Members

Block () Default constructor
1.6.1 Block (const Block<Type, Hidden Data>& blk)
Copy constructor 24

inline void
initialize (void* ref, const Index runj,
const Hidden_Data& hd)
Inititialize the block
inline void
reference (void *ref)
Set the reference at the top of the
block

inline void*
reference () const Return the reference at top of the
block

inline char*®
begin_data () Return the pointer to the beginning
of valid data

inline size_t
header _offset () const
Return the required offset in bytes
before beginning of data
inline Type&
operator{] (const Index bytes) const

Return item at location bytes off-
set from top of block

The Block class primary purpose is to encapulate a Block_header and its
associated data. This class should be nested inside Reference_Nc_Array but
alas some compiliers are behind the times.

1.6.1

Block (const Block<Type, Hidden_Data>& blk)

Copy constructor

Copy constructor. For completness and to remove compilier warnings.

This page bas been automatically generated with DOC++ 4
DOC++ is (1995 by Rol;nd Wunderling 2
Mal o

e Zockler

What’s in Array.H?

1.6.2

inline Block <Type, Hidden_Data> & operator= (const
Block<Type, Hidden_Data>& rhs)

Equals operator.

1.7

Equals operator

For completness and to remove compilier warnings.

template <class Type, class Hidden Data> class Refer-
ence_Nc_Array

Public Members

size_t

Index

Index

Index

Reference_Nc_Array (R_a) is an of array of Blocks

Reference Nec_Array (const Index n,
const Index bs = 4*KILO,
const Index jmp = 0,
Type* init = 0)
Construct a Reference_Nc_Array
of n elements each of jump size in
blocks of bs with an optional ini-
tializer

Reference Nc_Array (const
Reference_Nc_Array<Type,
Hidden Data>& ra)
Copy Constructor.

ref_mask () const Return the number of bytes in each
of the elements

jump () const Return the element jump size in
bytes

block_size () const
Return the number of elements
that fit within a block

num _blocks () const

This page has been automatically generated with DOC+4
DOC++ is (©1995 by Roland \!Vumhrling

Maite Zockler

1 What’s in Array.H?

1.7.2

Return the number of blocks in the
srray

inline Type&
operator|] {const Index i) const
Container’s operator== wants a
const version

inline Type&
operator) (const Index i)
Return reference to the i’th loca-

tion resizing if necessary 28
Type& ref (const Index i) Get a reference, as in operator()
(so this needs to be protected in the
same way), but fast like operator(]
(no resizing)
Monitor* monitor () Return the threads monitor for
this array.
inline Type&
last () Return the address of one past the
end of the current size
inline void
update {const Index i, const Type& item)
Set the array’s i’th element to item
inline void
insert (const Index i, const Type& item)
Insert item at i’th location
inline Index
size (const Index sz)
Set the size of array changing ca-
pacity of necessary
Index size () const Return the number of items
inline Index
capacity (const Index new_capacity)
Set the new capacity
Index capacity () const Return present capacity.
inline void
sort () Sort the array.
inline void
This page has been antomatically generated with DOC++ 26

DOC++ is @©1995 by Roland Wunderling

Make Zickler

1 What's in Array.H?

reference (void * ref)
Return the reference guaranteed ot
the top of the block

void* reference () const Return a reference to the “refer-
ence” pointer at top of each block

inline Index
index (const Type* t) const
Find the position in the array
given the address.

void set_data_fx {void (*{x)(Index, Hidden Data*))
Pointer to function used to set
user date at top of each block

inline Hidden Data
hidden_data (void * pt)
Return a copy of the hidden date
at top of block

template <class Rhs_type> inline void
equal (const Rhs_type& rhs)
Essentially a templatized opera-
tor= (NOT ==) used by opera-
tor= in Conlainer

Reference_Nc_Array <Type, Hidden_Data> &
operator= {const Reference Nc_Array<Type,
Hidden_Data>& ra)
Equals operator. For completness
and to remove compilier warnings

~“Reference Nc_Array ()
Default destructor. Deliberately
not virtual.

Reference Nc_Array (R.a) is an of array of Blocks. Each Block contains a
header. This header is memory aligned so that a reference can be found by
taking any location inside the block (the address of an element) and masking
off a given number of bits using the formula

element_address & ref_mask

where ”&” is the bitwise AND operator. Each block also stores a running
index of the number of elements in the array that are stored before this block.
Each block also stores some user data. This data is set by a user provided
function and retrived by giving any address in the block to the hidden_data

This page has been automatically generated with DOC+-+

DOC++ is 1985 by Roland Wunderling 27
Malte Zockler

1 What’s in Array.H?

member function.

1.7.2

inline Type& operator) (const Index i)

Return reference to the i’th location resizing if necessary

Return reference to the i’th location resizing if necessary. Not thread-safe. Use
the monitor to protect yourself by locking it down as we may do set._ calls.

1.8

template <class Type> class Sorted_Array : public Ad-
justable_Array<Type>

An extention to Adjustable_Array that maintains the elements in sorted order
resulting in log2(n) searches for a specific element

Inheritance
1.3

Heap_Array j

1.4

Adjustable_Array —l

1.8
Sorted Array

Public Members
1.81 Type& operator() (const Index) 30

inline Index

This page has been automatically generated with DOC+4

DOC4+ is 1995 by Roland Wunderling 28
Malte Zockler

1 What’s in Array. H?
size (const Index n)
Ignore commands to set the size
to anything larger than the current
size
Index size () const Get the size of the array.
inline void
update (const Index, const Type&)
Sorted arrays don’t allow direct ac-
cess to elements
Index insert (const Index, const Type& item)
Ignore any index on an insert op-
eration
1.8.2 inline Index
insert (const Type& item, const bool lock=true)... 31
inline void
remove (const Type& item)
Removes the item or does nothing
if the item wasn’t found
inline void
remove_index (Index)
Removes the item at given index
1.8.3 inline Index
find _position (const Type& item,
bool * found) const
Finds the posiltion where an item
is or should be in the array 31
inline bool
has_item (const Type& item) const
Checks to see if item exists in ar-
ray or not.
inline Index
find_position (const Type& item) const
Finds where an item is or should
be i the array.
inline Index
find (const Type& item) const
Finds where an item is in the ar-
ray. Dies if the item isn’t found.
template <class Rhs_type> inline void
This page has been automatically generated with DOC++ 29

DOC+-+ is (1995 by

Roland Wunderling
Malte Zockler

1 What’s in Array.H?

equal (const Rhs_type& rhs)
Essentially o templatized opera-
tor= (NOT ==} used by opera-
tor= in Container

inline void

equal (const Sorted_Array& rhs)
Essentially o operator= (NOT
==) for Sorted Arrays used by op-
erator= in Container

inline void
equal (const Container<Type, Sorted_Array>& rhs)
Essentially a operator= (NOT
==) for Sorted Array Containers
used by operator= in Container

inline Type*
intersection (Sorted_Array<Type> &a)
Find the first intersection element
between this array and a
inline void
intersection (Sorted_Array<Type> &a,
Sorted_Array<Type> &b)
Fil array b with the entire inter-
section of elements between this &
a.

inline Sorted_Array <Type> &
operator= (const Sorted Array<Type>& sa)
Equals operator. For completness
and to remove compilier warnings

1.84 “Sorted_Array () Default destructor 31

1.8.1

Type& operator() (const Index)

Sorted arrays don’t allow direct access to elements.

This page has been automatically generated with DOC++

DOC++ is ®1995 by Roland Wunderling 30
Malte Zsckler

1 What’s in Array.H?

1.8.2

inline Index insert (const Type& item, const bool

lock=true)

Return Value: s position that item was inserted to

1.8.3

inline Index find_position (const Type& item, bool *

found) const

Finds the position where an item is or should be in the array

Finds the position where an item is or should be in the array. Doesn’t lock
the array - may be adversely affected if array resizes during execution.

1.8.4

~Sorted_Array ()

Default destructor

Default destructor. Deliberately not virtual. Does nothing, Heap_Array’s de-
structor does the work.

1.9

tem[)late <class Type, class Array> class Container :
public Array

Container is a decorator class that defines common operations for any
container

This page has been automatically generated with DOC++

DOC++ is @1095 by Roland Wundetling 31
Malte Zockler

1 What'’s in Array.11?

Inheritance

Array

1.9

Container

20.1

L Sparse_matrix_row

Public Members

Container (const Index n = 0)
Default constructor. Construction
passed to the Array class

Container (const Index n, const Index blksz,
const Index jump, Type* init)
Construct array of n elements in
blocks of given size

Container (const Container<Type, Array>& a)
Copy Constructor.

template <class B> inline bool
operator < (const B& rhs) const
< comparison operator for Array
container classes

template <class B> inline bool
operator<= (const B& rhs) const
= comparison operator for Array
container classes

template <class B> bool
operator > (const B& rhs) const
> comparison operator for Array
container classes

template <class B> bool
operator>= (const B& rhs) const
= comparison operator for Array
conteiner classes

template <class B> bool

Thix page has been automatically generated with DOC++
DOC++is ©1995 by Roland Wundesling

Malte Zockler

1 What'’s in Array.H?

1.9.1

operator!= (const B& rhs) const
I= comparison operator for Array
container classes

template <class Rhs_type> inline bool
operator == (const Rhs_type& rhs) const
= comparison operator for Array
container classes

inline Container <Type, Array> &
operator= (const Type val)
Assignment from a scalar

template <class Rhs_type> inline Container <Type, Array> &
operator= (const Rhs_type& rhs)
Container equals container opera-
tor=

inline Container <Type, Array> &
operator= (const Container<Type, Array>& rhs)
Our specialization required so
some compilers don’t override

inline operator Sstring ()
Allows containers to be repre-
sented as Sstrings

void pack (Send& buf) const
Support for any type of Container
to be sent via Comm

void un_pack (Recv& buf)
Support for any type of Container
to be recv via Comm.

~“Container () Destructor. Does nothing, Tem-
platized arrays do the real destruc-
tion.

34

Container is a decorator class that defines common operations for any container.
Right now our only types of containers are the array classes. They can be used
without being adorned by container, but this is not normally recommended as
they can not then interact with other containers.

1.9.1

void pack (Send& buf) const

This page has been automatically generated with DOT++

DOC++ is @1995 by Roland Wunderling

Malte Zockler

33

1 What’s in Array.H?

Support for any type of Container to be sent via Comm

Support for any type of Container to be sent via Comm. This won’t. pack in any
”hidden” information such as references and block sizes, as they may be invalid
on the other side and almost certainly can be rebuilt there. This provides the ad-
vantage that a container of one type can be received as a container of a different
type, i.e. astack array be received as an adjustable array.

This page has been automatically generated with DOC4+4

DOC++is 91995 by Roland Wunderling 34
Malte Zockler

2 Gid

2

(T,H) typedef long Gid

Integer large enough to provide a unique identifier for a large number of
objects across a large number of processors

This page has been automatically generated with DOC+-+4

DOC++ is @1995 by Rotand Wundesting 35
Make Zickler

3 What’s in Comm.H?

3

What’s in Comm.H?

Names
31 class Communicator Communicator class to define

more complicated topologies than

just MPI_COMM_WORLD 36
3.2 class Comm Comm class 38
3.3 class Message Base class Message 45
34 class Send : public Message

Send buffer 49
3.5 class Recv : public Message

Recewve buffer 59

In simple terms, Comm.H contains several classes that collectively act as a
thread-safe MPI wrapper. By proper use of these classes, a user can send an
arbitrary object from one processor to another. How can we communicate an
arbitrary object when MPI only knows about int, double, char, etc.? We take a
pass-the-buck approach: any object that wishes to be communicated must have
member functions that enable the object to pack itself into a buffer or unpack
itself out of a buffer. This packing and unpacking is recursive and eventually
we recurse down to an intrinsic variable that MPI actually knowns how to deal
with.

3.1

class Communicator

Commaunicator class to define more complicated topologies than just
MPI_.COMM_WORLD

Public Members

Communicator () Default constructor gener-

ates a Communicator using
MPI.COMM_WORLD

Communicator (int n, int * procs)

This page has becn astomatically gencrated with DOC++

DOC++ is ©1995 by Roland Wunderling ' 36
Malte Zockles

3 What’s in Comm.H?

Define a new communicator using
the given list of processors {(using
their global ranks)

3.1.1 Communicator (const Communicator& comm)
Copy constructor 37

3.1.2 Communicator&
operator= (const Communicator& comm)
Assignment operator 38

~Communicator ()
Default destructor frees up the

Commaunicator
313 int nproc () Number of processes in this com-
municatorl 38
314 int me () My unique ID within this commu-
TICALOT .« o v e, 38

operator MPI_Comm ()
Transparently transform into a
MPI_Comm for use in MPI calls.

3.11

Communicator (const Communicator& comm)

Copy constructor

Copy constructor. Creates a duplicate MPI communicator.

3.1.2

Communicator& operator= (const Communicator&

comm)

Assignment operator

This page has been automatically generated with DOC++

DOCH+ is (D1995 by Roland Wunderling 37
Malte Zockler

3 What’s in Comm.H?

Assignment operator. Creates a duplicate MPI communicator.

3.1.3

int nproc ()

Number of processes in this communicator

Return Value: Number of processes

3.1.4

int me ()

My unique ID within this communicator

My unique ID within this communicator. Every MPI process is given a
unique process ID per communijcator, usually from 0 to (processes ~ 1).
This ID is constant for the life of the communicator.

Return Value: Processor ID

3.2

class Comm

Comm class

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling 38
Malkte Zockler

3 What’s in Comm.H?

Public Members

3.2.1 Comm (int* p_arge, char** p_argv[))
Constructor 40
3.2.2 ~Comm () Destructor 40
3.2.3 void nop () Don’t do o darn thing 41
3.2.4 static int nproc () Number of processes 41
3.2.5 static int me () My unique ID 41
3.2.6 static const char*
name () Every MPI process is given a
unique naeme (character string) . 42
3.2.7 static int barrier (Communicator& comm=default_comm)
Synchronize all processes 42
3.2.8 template <class Valtype> static Valtype
max (Valtype loc_val)
Find the global mazimum for some
velue ... oot 42
3.2.9 template <class Valtype> static Valtype
min (Valtype loc_val)
Find the glebal mintmum for some
value 43
3.2.10 template <class Valtype> static Valtype
sum (Valtype loc_val)
Find the global sum for some value
................................ 43
3.2.11 static Gid global offset (Gid my size, Communicatoré
comms=default_comm)
Find my global offset with respect
to all the processors with a rank
below mine 43
3.2.12 static Gid*
global _cutoffs (Gid mysize, Communicatoré
comm=default_comm)
Get the list of cutoffs between all
the processors 44
3.2.13 static double
time () Eyerybody always wants timing in-
formation 44
3.2.14 static ofstreamé&
This page has beer automatically generated with DOC++ 39

DOC++ is (1995 by Roland Wunderling

Malte Zockler

3 What’s in Comm.H?

dfile () Every processor has its own file for
writing diagnostic information . 45

Comm class. This class is used to start an MPI process. Each process
must instantiate one and only one Comm object. Instantiation of this object
starts MPI. This class also has some miscellaneuous static member functions for
common communication operations.

3.2.1

Comm (int* p_argc, char** p_argv(])

Constructor

Constructor. This is the only constructor. Instantiation starts MPI. Note
that MPI needs both argc and argv, and that these may be modified. So if you
don’t want them modified, make a copy first.

Parameters: p-argc — Pointer to argc
p-argv — Pointer to argv

3.2.2

~Comm ()

Destructor

Destructor. The destructor stops MPL.

Thia page has been automatically generated with DOC-++

DOC++ is 1995 by Roland Wunderling 40
Maite 2ackler

3 What'’s in Comm.H?

3.2.3

void nop ()

Don’t do a darn thing

Don’t do a darn thing. Use this to eliminate ”never referenced” warnings.

3.24

static int mproc ()

Number of processes

Number of processes. A SPMD paradigm is assumed, where there are N
processes running the same executable. The number of processes is constant for
the life of the program.

Return Value: Number of processes

3.2.5

static int me ()

My unique ID

My unique ID. Every MPI process is given a unique process ID, usually
from 0 to (processes - 1). This ID is constant for the life of the
program.

Return Value: Processor ID

This page has been automatically generated with DOC+-+

DOC++ is 1995 by Roland Wunderling
Malte Zockler

41

3 What’s in Comm.H?

3.2.6

static const char* name ()

Every MPI process is given a unique neme (character siring)

Every MPI process is given a unique name (character string). The name
depends upon the MPI implementation.

Return Value: A constant character string.

3.2.7

static int barrier (Communicator&

comm=default_comm)

Synchronize all processes

Synchronize all processes. When a process invokes barrier, it waits until all
other processes invoke barrier.

3.2.8

template <class Valtype> static Valtype max (Valtype
loc_val)

Find the global mazimum for some value

Find the global maximum for some value. The value is templated and the
templated type must support the comparison operators. This must be called
exactly once for every process in the array. Alternatively, try the global_max(T
data, T* reduced_data) function. It’s probably faster, but I'm not sure it works
for non-intrinsic types.

This page has been automatically generated with DOC4++ 42
DOC++is (91995 by Roland Wundesling
Malte Zockler

3 What’s in Comm.H?

3.2.9

template <class Valtype> static Valtype min (Valtype
loc_val) '

Find the global minimum for some value

Find the global minimum for some value. The value is templated and the
templated type must support the comparison operators. This must be called
exactly once for every process in the array. Alternatively, try the global min(T
data, T* reduced_data) function. It’s probably faster, but ’'m not sure it works
for non-intrinsic types.

3.2.10

template <class Valtype> static Valtype sum (Valtype
loc_val)

Find the global sum for some value

Find the global sum for some value. The value is templated and the templated
type must support the arithmatic operators. This must be called exactly once
for every process in the array. Alternatively, try the global sum(T data, T*
reduced._data) function. It’s probably faster, but I'm not sure it works for non-
intrinsic types.

3.2.11

static Gid global_ offset (Gid mysize, Communicator&

comm=default_comm)

Find my global offset with respect to all the processors with a rank below mine

Find my global offset with respect to all the processors with a rank below mine.
That is, if PO has a size of 3, P1 has a size of 5 and P2 has a size of 4, P0 gets
a global offset of 0 (because there’s nothing before it in rank), P1 gets a global
offset of 3 (size of PO) and P2 gets a global offset of 8 (size of PO + P1).

This page has been avtomatically generated with DOC++

DOC4+is @199 by Roland Wanderling 43
Malte Zgckler

3 What’s in Comm.H?

3.2.12

static Gid* global_cutoffs (Gid my_size, Communicator&

comm=default_comm)

Get the list of cutoffs between all the processors

Get the list of cutoffs between all the processors. That is, if PO has a size of
3, P1 has a size of 5 and P2 has a size of 4, the global division array will be
[2, 7, 11] which means that PO owns 0-2, P1 owns 3-7 and P2 owns 8-11, so
the number stored for each processor is the upper bound of the elements that
it owns. Oh, and delete the array when you’re done with it.

3.2.13

static double time ()

Everybody always wants timing information

Everybody always wants timing information. There are several different
timing mechanisms, unfortunately none seems to work consistently across all
platforms. Right now this method simply invokes the standard C clock utility
instead of the MPI timing routine. The MPI timing routine seemed to give
wall clock time, which is not very useful when sharing a processor with a dozen
other users. This time method returns CPU time. The clock resolution and
maximum timing interval are system dependent.

Return Value: The current time, in seconds.

3.2.14

static ofstream& dfile ()

Every processor has its own file for writing diagnostic information

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling 44
Malte Zockler

3 What’s in Comm.H?

Every processor has its own file for writing diagnostic information. The file
is created automatically in Comm’s constructor. This is a little cleaner (and
faster) than having everybody write diagnostic info to cout.

Return Value: An open ofstream object

3.3

class Message

Base class Message

Inheritance

3.3
Message

3.4
Send

3.5
Recv

Public Members

Message (Communicator& comm=default_comm)
Default Constructor

Message (const Message &)
Copy Constructor

Message& operator= (const Message &)
Assignment operator

virtual ~“Message () Basic Destructor
336 int length () constiiiei 46
3.3.7 int length (int at_least_this_big)
Allows the user to manuelly in-
crease the size of the buffer 47
338 int amount () const ... 47

This page has been automatically generated with DOC-++

DOC++ is (©1995 by Roland Wunderling 45
Makte Zockler

3 What’s in Comm.H?

Protected Members

3.3.1

3.3.2

3.3.3

3.34

3.3.5

Communicator&
communicator

char* buf

int buf_len

int buf_place

int my_tag

int other

bool locked

MPI_Status*
status

MPI_Request*
request

The communicator we’re using for
this message

The buffer
The current length of the buffer.

The place in the buffer where new
data will go.

The the message tag

The other process involved in the
communication.

Indicate that a non-blocking send
OT Tecy s in progress

The status of the message

Some MPI calls have a request
data structure, such as non-
blocking send and receive calls

47
48

48

48

Base class Message. This is a base class that contains data and methods
common to both Send and Recv. Do not attempt to instantiate a Message
directly, compiler will not let you do this.

3.3.6

int length () const

Return Value:

The current length of the buffer.

This page has been automatically generated with DOC++

DOC++ is @1995 by Roland Wunderling

Malte Zickler

46

3 What’s in Comm.H?

3.3.7

int length (int at_least_this big)

Allows the user to menually increase the size of the buffer

Return Value: The new length of the buffer.
Parameters: at_least_this big — The buffer size will be >= this
param.
3.3.8

int amount () const

Return Value: The amount of data (bytes) in the buffer.

3.3.1

Communicator& communicator

The communicator we'’re using for this message

The communicator we’re using for this message. If the user doesn’t set one, it
defaults to default_comm (MPI.COMM_WORLD).

This page has been automatically generated with DOC++

DOC++ is (21995 by Roland Wunderling 47
Malte Zackler

3 What’s in Comm.H?

3.3.2

char* buf

The buffer

The buffer. All data is converted to bytes and put in the buffer. The buffer
grows automatically as needed.

3.3.3

int my_tag

The the message tag

The the message tag. Usually an integer 0 to M, see MPI documentation for
more details.

3.3.4

MPI_Status* status

The status of the message

The status of the message. Some MPI calls have a status data structure (such
as MPLIprobe), but users should not need to access this data directly.

3.3.5

MPI_Request* request

Some MPI calls have a request data structure, such as non-blocking send and
receive calls

Some MPI calls have a request data structure, such as non-blocking send and re-
ceive calls. Users should not need to access this data directly.

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Wunderling 48
Malte Zackler

3 What’s in Comm.H?

3.4

class Send : public Message

Inheritance

3.3

Send buffer

Message —\l

3.4

Send

Public Members

34.2 Send&
3.4.3 Send&
344 Send&
3.4.5 Send&
3.4.6 Send&
3.47 Send&
3.4.8 Send&
3.4.9 Send&
3.4.10 Send&

Send (Communicator& comm = default.comm)
Busic Constructor

“Send () Basic Destructor

operator() (const int& the destination,
const int& the_tag = DEFAULT_.TAG)
Buffer set-up 51

send () Send the buffer 51

send (const int& the_tag)
Same as send() except that the_tag
ts used as the tag 52

ready send () Send the buffer 52

ready_send (const int& the_tag)
Same as ready_send() except that
the_tag is used as thetag 53

sync_send () Send the buffer using an MPI syn-
chronuous send 53

sync_send (const int& the_tag)
Same as sync_send() except that
the_tag is used as the tag 53

post.send () Posta send 54
post_send (const int& the_tag)

This page has been automatically generated with DOC++

DOC++ is (21995 by

Roland Wunderling 49

Malkte Zickler

3 What’s in Comm.H?
Same as post.send() except that
the_tag is used as the tag 54
3.4.11 Send& post_ready_send ()
This is a combination of
post_send() and ready_send()
54
3.4.12 Send& post_ready_send {const int& the_tag)
Same as post_ready_send() except
that the_tag is used as the tag 55
3.4.13 Send& post_sync_send () This is a combination of
post_send() ond sync_send()
55
3.4.14 Send& post_sync_send (const int& the_tag)
Same as post_sync_send() except
that the_tag is used as the tag b3
3.415 Send& complete_send () This method completes the send
operation initiated by a post send
56
3.4.16 Send& broadcast () Send this buffer to everybody ex-
ecpt Me oo . 96
3.417 Send& broadcast {const int& the_tag)
Same as broadcast() except that
the_tag is used as the tag a7
3.418 int dest () const ... 57
3.4.19 int tag (Jconst i 57
3.4.20 template <class T> void
pack (T& object) Templated pack function 57
3.4.21 template <class T> wvoid
pack {T* object, int n)
Same as pack(), ezcept we pack n
objects into the buffer 58
3.4.22 template <class T> Send&
operator<< (const T& data)
This operator simply invokes the
pack() method 58

Send buffer. A Send object can be considered a smart buffer in the sense that
this buffer knows how to send itself to another process. A program may have as
many Send buffers as it wants, but keep in mind that these buffers do take up

This page has been automatically generated with DOC++
DOC++ is (©1995 by Roland Wunderfing

Malte Zickier

30

3 What’s in Comm.H?

memory. It is not necessary to create a new buffer for every message, the Send
buffer can be used over and over again. The idea is that the program packs
several arbitrary objects (not necessarily of the same type) into the Send buffer,
and the tells the buffer to send itself. Kind of like putting several christmas
gifts into one big box, and then sending the box to a single destination.

This class uses the MPI_Pack routine to pack data into the buffer, and all
messages are sent using MPI_PACKED data type. This is not the fastest way to
do message passing, but it is the most general. This is very useful for dynamic
objects, i.e. objects that shrink and grow during the life of the program.

3.4.2

Send& operator() (const int& the_destination, const int&
the_tag = DEFAULT_TAG)

Buffer set-up

Buffer set-up. This operator sets the other to the_destination, sets my.tag to
the_tag, and sets ok_to_pack to TRUE. The destination is a processor ID in the
range 0 .. (num processes-1). The tag is an integer in the range 0 .. M (M
is implementation specific, but it is usually the maximum unsigned int). The
user must invoke this method this prior to packing data into the buffer. In
order to do a broadcast (send to everybody except myself) the destination may
be BROADCAST. Note that the user does not have to specify the tag here, it
could be specified using the send method.

Return Value: Reference to the Send buffer.
Parameters: the_destination — The destination process.
the_tag — Tag used to tag the outgoing message.

3.4.3

Send& send ()

Send the buffer

Send the buffer. The buffer is sent to other using my_tag. A MPI basic send

This page has been automatically generated with DOCH+

DOCH+ is 1995 by Roland Wunderling 51
Makte Zockler

3 What’s in Comm.H?

is used, this is the best all around send. Upon return the buffer is free for re-
use, but the message might not have been received yet, i,e. it could have been
buffered by the system. Note that some systems have small buffers (kilobytes)
and if the message exceeeds the buffer, this call will block until the destination
does a receive. Look at the test suite for demonstration of how to use the
send/recv methods in a deadlock-free manner.

Return Value: Reference to the Send buffer.

3.4.4

Send& send (const int& the_tag)

Same as send() except that the_tag is used as the tag

Return Value: Reference to the Send buffer.

3.4.5

Send& ready_send ()

Send the buffer

Send the buffer. This method uses an MPI ready send. The buffer is free for
re-use upon return. Do not use this method unless you are absolutely, positively
sure that the destination process has already posted a receive. If you are sure
that the receive has been posted, this method can be very fast. It does not
use any system buffers. This method requires a significant amount of process
synchronization and user sophistication, use at your own risk!

Return Value: Reference to the Send buffer.

This page has been automatically genesated with DOC++

DOC++ is (©1995 by Roland Wunderling 52
Make Z5ckler

3 What’s in Comm.H?

3.4.6

Send& ready_send (const int& the_tag)

Same as ready_send() except that the_tag is used as the tag

Return Value: Reference to the Send buffer.

3.4.7

Send& sync_send ()

Send the buffer using an MPI synchronuous send

Send the buffer using an MPI synchronuous send. This method does not re-
turn until the corresponing receive has started (but not necessarily finished).
Otherwise it is the same as the basic send().

Return Value: Reference to the Send buffer.

3.4.8

Send& sync_send (const int& the_tag)

Same as sync_send() except that the_tag is used as the tag

Return Value: Reference to the Send buffer.

This page has been automatically generated with DOC++

DOCH+ is 1995 by Roland Wunderling 53
Make Zickler

3 What’s in Comm.H?

3.4.9

Send& post_send ()

Post a send

Post a send. This method tells the system ”Send this buffer when you get
a chance, and let me do some real work while you are sending the buffer.”
This method returns (almost) immediately, allowing the calling program to do
something else while the message is being sent. However the buffer is locked,
the user cannot re-use the buffer. This is useful for overlapping real work with
communication, which is required in order to achieve optimal performance. But
it only makes a difference for large messages. At some point the user must
invoke complete_send() to verify that the buffer has been send and unlock the
buffer for re-use.

Return Value: Reference to the Send buffer.

3.4.10

Send& post_send (const int& the_tag)

Same as post_send()} except that the_tag is used as the tag

Return Value: Reference to the Send buffer.

3.4.11

Send& post ready_send ()

This is a combination of post_send() and ready_send()

This is a combination of post_send() and ready_send(). You can consider yourself
an parallel guru if you sucessfully use this method in a real application.

This page has been automatically generated with DOC+-+

DOC++ is ©1995 by Roland Wunderling 54
Malte Zockler

3 What’s in Comm.H?

Return Value: Reference to the Send buffer.

3.4.12

Send& post_ready._send (const int& the_tag)

Same as post_ready_send() except that the_tag is used as the tag

Return Value: Reference to the Send buffer.

3.4.13

Send& post_sync_send ()

This is a combination of post_send() and sync.send()

This is a combination of post_send(} and syncsend(). This method returns
(almost) immediately, allowing the calling program to do something else while

the message is being sent. However the buffer is locked, the user cannot re-use
the buffer.

Return Value: Reference to the Send buffer.

3.4.14

Send& post_sync_send (const int& the_tag)

Same as post_sync_send() except that the_tag is used as the tag

Return Value: Reference to the Send buffer.

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling 55
Malte Zockler

3 What’s in Comm.H?

3.4.15

Send& complete_send ()

This method completes the send operation initiated by a post send

This method completes the send operation initiated by a post send. Upon
return the buffer is unlocked and is free for re-use. The message may or may
not have arrived at the destination, it depends upon which version of post send
was invoked.

Return Value: Reference to the Send buffer.

3.4.16

Send& broadcast ()

Send this buffer to everybody execpt me

Send this buffer to everybody execpt me. Note that this method does not
use an MPI broadcast! This method basically does a send to everybody. The
destination processes simply does an everyday receive. This is slower than the
real MPI broadcast but it is more general, we can tag the message, we can
probe it, etc. In order to do a brodcast the user must set the destination to
BROADCAST. Note that this method might not work properly in a hetero
environment. The typical use of this method is when process 0 reads in some
data from a file and broadcasts it to everybody else. In this case speed is less
important than generality.

Return Value: Reference to the Send buffer.

3.4.17

Send& broadcast (const int& the_tag)

Same as broadcast() except thet the_tag is used as the tag

This page has been automatically generated with DOC 4+

DOC++is (©1995 by Roland Wunderling 56
Malte Zockler

3 What’s in Comm.H?

Return Value: Reference to the Send buffer.

3.4.18

int dest () const

Return Value: Retruns the dest process ID

3.4.19

int tag () const

Return Value: Returns the message tag

_ 3.4.20

template <class T> void pack (T& object)

Templated pack function

Templated pack function. This method packs the object of type T into the
buffer. Every non-intrinsic object must know to pack itself into the buffer. If
the object is an instrinsic (char, double, etc.) than it is simply packed into the

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling
Malte Zockler

57

3 What’s in Comm.H?

buffer using the MPI pack function. If the object is not an intrinsic, than the
object must have its own pack method of the form void pack(&Send buf). The
objects pack method can in turn use this pack method to pack its data. This
way we can create and modify classes ad infinitum without ever modifying this
communication class.

Parameters: object — The object to be packed into the buffer.

3.4.21

template <class T> void pack (T* object, int n)

“Same as pack(), except we pack n objects into the buffer

Parameters: object — Pointer to an array of objects
n — The number of objects

3.4.22

template <class T> Send& operator<< (const T& data)

This operator simply invokes the pack() method

This operator simply invokes the pack() method. The idea is to make commu-
nication look like I/O. See the example program.

Parameters: p — A referecne to this object
data — The data object to pack into the buffer

This page has been automatically generated with DOC++

DOC+-+ is (©1995 by Roland Wunderling 58
Malte Zsckler

3 What’s in Comm.H?

3.5

class Recv : public Message

Receive buffer

Inheritance

3.3

Message __l

3.5
Recv

Public Members

Recv (Communicator& comm=default_comm)
Basic Constructor

“Recv () Basic Destructor

351 Recv& operator) (const int& the source = ANY_SOURCE,
const int& the tag = ANY_TAG)
This receive operation blocks un-
til it receives a message from
the_source with the_tag 60
3.5.2 Recv& post_recv (const int& the_source = ANY_SOURCE,
const int& the tag = ANY_TAG)
This is similar to operator() 61
3.5.3 Recv& complete_recv () This method completes the receive
operation posted by post_recv() .. 61
354 int source (Jconst ... 62
3.5.,5 int tag () const . 62
3.5.6 int size (Jconst ...l 62
3.5.7 template <class T> void
un_pack (T& object)
Temploted unpack function 63
3.5.8 template <class T> void
This page has been automatically generated with DOC++ 59

DOC++ is (1995 by Roland Wunderling

Malte Zockler

3 What’s in Comm.H?

un_pack (T* object, int n)
Similar to un_pack, exceplt this
method unpacks an array of ob-
jects ..o....o....... e 63

3.5.9 template <class T> Recv&
operator>> (T& data)
This method simply calls
wn.pack() ... i 64

void pack (Send& buf) const
Allow the buffer to pack itself into
a Send buffer without ever unpack-
ing

Receive buffer. A Recv object can be considered a smart buffer in the sense that
this buffer knows how to receive itself from another process. A program may
have as many Recv buffers as it wants, but keep in mind that these buffers do
take up memory. It is not necessary to create a new buffer for every message,
the Recv buffer can be used over and over again. The idea is that the Recv
buffer is like a big box full of little presents. You invoke a receive method to
receive the box, and then you unpack the presents one by one. The presents are
arbitrary objects, not necessarily of the same type.

This class uses the MPI_Unpack routine to unpack data from the buffer,
and all messages are received using MPI_PACKED data type. This is not the
fastest way to do message passing, but it is the most general. This is very
useful for dynamic objects, i.e. objects that shrink and grow during the life of
the program.

3.5.1
Recv& operator) (const int& the_source =
ANY SOURCE, const int& the_tag
= ANY_TAG)

This receive operation blocks until it receives a message from the_source with
the_tag

This receive operation blocks until it receives a message from the_source with
the_tag. After the message arrives you can invoke source() to see who it came
from, tag() to examine the tag, and size() to see how big it is.

This page has been automatically generated with DOC++4

DOC++ is (©3995 by Roland Wunderling 60
Mahe Zockler

3 What'’s in Comm.H?

Return Value: Reference to this object.
3.5.2
Recv& post_recv (const int& the_source =
ANY _SOURCE, const int& the_tag
— ANY_TAG)

This is similar to operator()

This is similar to operator(). This method posts a recieve. This method tells the
system " Receive this buffer when you get a chance, and let me do some real work
while you are waiting for the buffer.” This method returns (almost) immediately,
allowing the calling program to do something else while the message is being
received. However the buffer is locked, the user cannot attempt to unpack
anything from the buffer yet. This method is useful for overlapping real work
with communication, which is required in order to achieve optimal performance.
But it only makes a difference for large messages. At some point the user
must invoke complete_srecv() to verify that the buffer has been received and set
ok_to_unpack to TRUE.

Return Value: Reference to this object.

3.5.3

Recv& complete recv ()

This method completes the receive operation posted by post_recv()

This method completes the receive operation posted by post_recv(). It is block-
ing, the method will not return return until a message with the correct tag from
the correct source arrives. This method sets ok_to_unpack to TRUE, user can
unpack data from the Recv buffer upon return.

Return Value: Reference to this object.

This page has been automatically generated with DOC++

DOC++ is (1995 by Roland Wunderling 61
Malte Zockler

3 What'’s in Comm.H?

3.5.4

int source () const

Return Value: Retruns the source process ID

3.5.5

int tag () const

Return Value: Returns the message tag

3.5.6

int size () const

Return Value: Returns the size of the message, in bytes

This page has been automatically generated with DOC-++

DOC++is 1995 by Roland Wunderling
Malte Zockler

62

3 What’s in Comm.H?

3.5.7

template <class T> void un_pack (T& object)

Templated unpack function

Templated unpack function. This method unpacks the object of type T
from the buffer. Every non-intrinsic object must know to unpack itself from
the buffer. If the object is an instrinsic (char, double, etc.) than it is simply
unpacked from the buffer using the MPI unpack function. If the object is not
an intrinsic, then the object must have its own unpack method of the form void
unpack(&Recv buf). The objects unpack method can in turn use this unpack
method to unpack its data. This way we can create and modify classes ad
infinitum without ever modifying this communication class.

Parameters: object — The object to unpack

3.5.8

template <class T> void un_pack (T* object, int n)

Similar to un_pack, except this method unpacks an array of objects

Parameters: object — A pointer to an array of objects
n — The number of objects to unpack

3.56.9

template <class T> Recv& operator>> (T& data)

This method simply calls un_pack()

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling 63
Malte Zockler

3 What’s in Comm.H?

This method simply calls un_pack(). It is used so that communication looks
just like I/O. See the example program.

Parameters: p — A reference to this object
data — The data object to unpack

This page has been automatically generated with DOC++

DOC++ s (©1595 by Roland Wunderling 64
Malte Zéckler

4 cloner

4

template <class Type, class ArgType> void* cloner (void
* our_void_arg)

Function to run in thread to handle cloning on all procs

This page has been automatically generated with DOC++

DOC++ is (1995 by Roland Wunderling 65
Malte Zscklier

5 CommPFactory

5

template <class Type, class ArgType> class CommFac-
tory : public Factory<Type, ArgType>

CommPFuactory is an extention to Factory that ensures that the clone of the
given object is cloned across all processors such that it exists uniquely on each
processor

Inheritance
Factory —\l/
5
CommPFactory

Public Members
void initialize
(const int ctb, Mutex * lock) (const int ctb,
Mutex *)
Call this before using this Comm-
Factory for cloning

void finalize () Call this before exiting

5.1 Type* clone { ArgType& arg)
Get a pointer to the unique in-
stance of the given type defined by
the given argument type 67

void clone_local (ArgType& arg, const Index pos)
Does the actual construction on
each processor

5.1

Type* clone (ArgType& arg)

Get a pointer to the unigue instance of the given type defined by the given
argument type

This page has been automatically generated with DOC++

DOC-++ is 1995 by Roland Wunderling 66
Malte Zockler

5 CommFactory

Get a pointer to the unique instance of the given type defined by the given
argument type. If it doesn’t exist, it will be created on all processors.

Return Value: s Pointer to the unique instance
Parameters: The — argument that uniquely defines the requested
instance

This page has been automatically generated with DOCH+

DOC++ is (©1995 by Roland Wunderling 67
Malte Zsckler

6 cloner

6

template <class Type, class ArgType> void* cloner (void
* our_void_arg)

This is the function used in the thread that CommPFactory::initialize() spins off

This is the function used in the thread that CommFactory::initialize() spins off.
On processor 0, it receives requests from arbritary processors in serial fashion,
returns if it already exists and tells the thread on all other processors to actually
build the thing if it doesn’t.

This page has been automatically generated with DOC++ 8

DOC++ is ©1995 by Roland Wunderling
Malte Zockler

7 Freelist

7

template <class Container, class Type> class Free_list

Free_list is a small helper class that can be used with Container classes that
have items large enough to store at least a pointer to another item

Public Members

7.2 Free_ list (Container& ct, bool gc)
Constructs a Free_list initializing
it with a reference to container . 71

Free_list (const Free list& rhs)
Default copy constructor. Should
not be called.

7.3 void turn_on_auto_garbage_collection ()
Start the auto garbage collecter
and immediately perform any re-
quired garbage collection before re-
turningo.L. 72
inline void
turn_off_auto_garbage_collection ()
Turn off the automatic garbage
collecter and use the free list mech-

enism
inline void
turn_on free_list_usage ()
Turns on free list useage when ob-
taining next() item(s)
7.4 inline void

turn_off_free_list usage ()
Turns off free list useage when ob-
taining next() item(s) 72

inline bool
free_ list_usedQ () Returns a boolean flag of whether
or not the free_list is being used for
next() operations

Free list& operator= {const Free list& rhs)
Equals operator.

bool assert_test () Test that size and alignment meet
criteria for using a free list

This page has been avtomatically generated with DOC+-+

DOC4+ is @1995 by Roland Wunderling 69
Malte Zickler

7 Freelist

7.5 inline void
add_to_free (Type* item)
Add item to free list 72

inline Type*
next () Returns item on freelist or next
available item space in container

7.6 sizet next_block (size_t num)
Obtains a block of items with con-
tiguous indicies from the container
and returns the index to the first
em .. 72

void reinitialize () Re_initializes the container and
free list

inline sizet
freelist size (} Returns the number of items on
the free list

inline size_t
num _jtems () Returns the number of items in
the container not counting those
on the free_list

Freelist is a small helper class that can be used with Container classes that
have items large enough to store at least a pointer to another item.

At present, ref(i), last(), block_size(), jump(), size(), index(Type*),
and relocate(Type*) member functions are required by the templated
container class. The ref(i) returns a reference to the i’th item in
the array. The last() member function that returns a reference to the
next available item in the container. The block_size() member function
returns the number of items that fit in a givem block of memory. The
jump() member function specifys the jump byte size between successive
items contained with a block. The size() member function provides
the number of items currently in the container. The index(Type#*)
member function returns the index position given an item address.
Lastly, relocate(Type*) member function is called by the Free list

if it relocates an item.

There is a boolean garbage_collection flag that can be turned on to
automatically perform garbage_collection on the container. Any items
on the free list are immediately garbage collected.

If the notification of a data item is not important then the
relocate(Type*) member function can be a no op. Garbage collection
will move items from the end of the array to fill any vacancies

This page has been automatically gencrated with DOC++

DOCH-+ is (©1995 by Roland Wunderling 70
Malte Zockler

7 Free list

earlier in the list.
Caveat:

This is not meant for Containers that can move an item’s location
as the array size changes. At present this class should be used in
conjunction with the Reference_Nc_Array. The garbage collection
process assumes memory is laid out in blocks like the
Reference_Nc_Array. If memory is contiguous then the array capacity
could never change size. If a user wants to use a free_list to
manage a contiguous memory situation then one way to accomplish
this is to have a huge block_size for the Reference_Nc_Array.
Also, useage of this Free list assumes the user is only adding
through last() or the Free_list next() and add_to_free() member
functions.

This Free_list class was built as a convenience mechanism to be used
in association with Reference_Nc_arrays. It is not a general purpose
garbage collector. The user can easily trash the Free_list if they

only use it partially and sometimes use the Container to change size

etc... You have been warned. A general purpose free_list,
garbage_collection utility is far beyond the perview of this
class.

7.2

Free list (Container& ct, bool gc)

Constructs a Free list initializing it with a reference to container

Constructs a Freelist initializing it with a reference to container. The
auto_garb_collection boolean is set by the bool gc.

7.3

void turn_on_auto_garbage_collection ()

This page has been automatically generated with DOCH+

DOC+4+ is (1995 by Roland Wunderling 71
Malte Zockler

7) Freelist

Start the auto garbage collecter and immediately perform any required garbage
collection before returning

Start the auto garbage collecter and immediately perform any required garbage
collection before returning. The usefreelist boolean is also set to true.

7.4

inline void turn_off free list_usage ()

Turns off free list useage when obtaining nezt() item(s)

Turns off free list useage when obtaining next() item(s). New item space is
acquired from the end of the Container. Automatic garbage collection flag is
set to false.

7.5

inline void add_to_free (Type* item)

Add item to free_list

Add item to free_list. If automatic garbage collection boolean is set then garbage
collection is performed immediately.

7.6

size.t next_block (size_t num)

Obtains a block of items with contiguous indicies from the container and
returns the indez to the first item

Obtains a block of items with contiguous indicies from the container and returns
the index to the first item. Garbage collection is done prior to obtaining the
block from the container.

This page has been automatically generated with DOC-+-+

DOC++ is (©1995 by Roland Wunderling 72
Malte Zockler

8 What’s in Memory_pool.H?

.

8

What’s in Memory_pool.H?

Naines

8.1 struct Prev_next Prev_next struct is a Mem-
ory_stamp number with prev,
next pointers to create a doublely
linked list 74

8.2 class Memory stamp The Memory_stamp class manages
the writing and reading of the
memory stamp for the Memory
PoOl 75

8.3 struct Sys_block Sys_block struct is for use as a
' simple linked list inside the Mem-
ory_pool class 79

Memory_pool is a power of 2 queue memory allocator that provides memory
always aligned to the requested size 8.4

Our aligned memory manager. The Memory_pool class gets raw aligned
blocks of memory from the global new operator. This Memory_pool class is
meant to be inherited by other Memory manager classes of higher functionality.
The Memory_stamp class is more of a helper class for memory Pool and could
be a nested class.

We're not interested in reinventing the wheel here. This is not meant to be
a general all encompassing memory pool allocater.

This is a special purpose memory manager that always returns memory
- aligned on the size requested. All requests are increased to: nearest power of 2
>= (size requested + sizeof(size_t)).

The intended usage of this class is for large memory allocations based on
integer powers of 2.

Specifically, the Memory_pool is not currently designed to handle:
1) Very small blocks of memory (few words or less)
2) Memory sizes far from an integer power of 2. For example, 1.5MB size.

3) Large numbers of small to medium sized allocated memory requests which
really don’t require any memory alignment restrictions

At a minimum each block requires:

This page has been automatically generated with DOC++

DOCH++ is (©1995 by Roland Wunderling 73
Malte Zsckler

8 What’s in Memory_pool.H?

sizeof(sizeof (size.t) + 2sizeof(void))

Actual memory usage overhead:

while memory is in use: sizeof(size_t):

while memory is on free list: sizeof(sizeof(size_t) + 2sizeof(void)):

to manage huge system block calls: Small amount if incidental pointers etc...
Caveat:

At present we don’t have the time to be extremely elegant. To ease code
writing, we will burden the user of these classes with the following:

sizeof(size t) will be added to every request for memory before calculat-
ing power of 2 size! This means that it will be optimal to ask for say 1024-
sizeof(size_t) bytes rather than 1024 bytes. Requesting 1024 bytes will require
2048 bytes of memory.

Concerns:
Memory management deals with many memory alignment portability issues.
Comments:

At a slight performance penalty the prev pointer used when memory is on
the freelist could be eliminated by rewriting put.in_use() and put.on.free()
member functions to not prev. This would reduce the required minimum size to
be 2sizeof(void). So even using 64 bit pointers the minimum real size would be
16 bytes. This would be comparable to normal system restrictions put_in_use()
would need handle to loop thru free list to find prev address.

Another approach whould be to use the size_t mask when on free_list but
this has many software complexity issues such as knowing the ”best_alignment”
and "last” bit flags.

8.1

struct Prev_next

Prev_next struct is a Memory_stamp number with prev, next pointers to create
a doublely linked list

Members

size_t num The Memory stamp

This page has been automatically generated with DOC++

DOC+-+ is 1996 by Roland Wunderling 74
Malte Zockler

8 What’s in Memory_pool.H?

Stamp next_ Pointer to next memory location
Stamp prev. Pointer to previous memory loca-
tion
Prev_next () Default constructor.
Prev_next (const Prev next&)
Copy Constructor. For com-
pletness and to remove compilier
wernings

Prev_next&
operator= (const Prev_next&)
Equals operator. For completness
and to remove compilier warnings

Prev_next struct is a Memory stamp number with prev, next pointers to
create a doublely linked list. This structure represents the memory usage while
memery is on the free list.

8.2

class Memory_stamp

The Memory_stamp class manages the writing and reading of the memory
stamp for the Memory pool

Public Members

Memory stamp (Stamp v = 0)
Default Constructor.

Memory stamp (const Memory stamp& rhs)
Copy Constructor. For com-
pletness and to remove compilier
WArnings.

size_t p2_size () Return the power of 2 for this
memory size

bool in_use () Return boolean flag of whether
memory is in use

This page has been automatically generated with DOC++

DOC++ is @1995 by Roland Wunderling 7
Makte Zockler

8 What’s in Memory_pool.H?

bool best_align () Return boolean flag of whether this
memory is already aligned on best
possible boundary

bool last () Return boolean flag of whether this
15 the last memory chunk of a huge
block

void set_in_use () Set the ”in use?” boolean flag

void unset_in_use () Unset the "in use?” boolean flag

void set_best_align () Set the "best alignment?” boolean
flag

void unset_best_align ()
Unset the “best alignment?”
boolean flag

void set last () Set the "last?” boolean flag

void unset _last () Unset the "last?” boolean flag

void set_size (size_t n) Set the size in powers of 2 for this
memory chunk

void set_stamp (size_t n)
Set the stamp to a given number

8.2.2 sizeit make_number (Stamp v) »

Create a number that can be used
for alignment calculations given @
Stamp ... 78

size_t stampoum () Return the Stamp number

Stamp prev (Stamp v) Return the previous memory loca-
tion

Stamp next (Stamp v) Return the next memory location

void* use_address () Return the address given to user
for this stamp

Stamp address () Return address of stamp

8.2.3 Stamp next_address () Read Stamp size and return the
Stamp of memory below us The
caller is responsible for determin-
ing whether the returned Stamp is
valid ...l 78
This page has been automatically generated with DOC++4 76

DOC++ is ©1995 by Roland Wunderling

Malke Z5ckier

8 What’s in Memory_pool.H?

8.2.4 Stamp prev_address () Read Stamp size and return the
Stamp of memory above of us The
caller is responsible for determin-
ing whether the returned Stamp is

velid 79
void set (Stamp v) Bind the stamp to new location
inline Stamp
put_in_use (Stamp v)
Take this block of memory off
the free list This is only called
with memory currently on free list
nezt_ is set to prev. and given ad-
dress’s prev_->next pir is set to
giwen address’s next ptr
8.2.5 inline void
put_on_free (Prev_next& free_list)
Put on the free list 79
Memory _stampé&
operator= (const Memory_stamp& rhs)
Equals operator. For completness
and to remove compilier warnings
Protected Members
b static const size_t
size_mask Enough size bits for 2,856 77
ytes of memory static const size_t
in_use._ Bit toggle flag specifing whether
memory is being used
8.2.1 static const size_t
best_align_ Bit toggle flag specifing whether
memory alignment is best possible
................................ 79
static const size_t
last _ Bit toggle flag specifing when this
memory is the last chunk of mem-
ory in a huge block retrieved by the
system
size_t num The Memory stamp number
Stamp next_ Pointer to next memory location
This page has been automatically generated with DOCH+ 77

DOC++ is @1995 by Roland Wunderling
Malte Zockler

8 What’s in Memory_pool.H?

Stamp prev_ Pointer to previous memory loca-
tion
Stamp ptr Pointer to actual Stamp ed

The Memory_stamp class manages the writing and reading of the memory
stamp for the Memory pool. The memory stamp is composed of a size_t* word
placed in just above the memory address given back to the user and 2 void**
pointers that point to prev and next memory when on free list. The Mem-
ory.stamp has all knowledge about size, alignment, and position relative to
other memory etc... but has no knowledge of actual type or intended usage.

8.2.2

size_t make_number (Stamp v)

Create a number that can be used for alignment calculations given a Stamp

Create a number that can be used for alignment calculations given a Stamp.
The alignment will be based on memory address after the Stamp number since
we base alignment of user’s handle to memory and not actual memory alignment

8.2.3

Stamp next_address ()

Read Stamp size and return the Stamp of memory below us The caller is
responsible for determining whether the returned Stamp is valid

Read Stamp size and return the Stamp of memory below us The caller is re-
sponsible for determining whether the returned Stamp is valid. Memory_stamp
only has knowledge local size jumps.

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling 78
Malte Zsckler

8 What’s in Memory_pool.H?

8.2.4

Stamp prev_address ()

Read Stamp size and return the Stamp of memory above of us The caller is
responsible for determining whether the returned Stamp is valid

Read Stamp size and return the Stamp of memory above of us The caller is re-
sponsible for determining whether the returned Stamp is valid. Memory_stamp
only has knowledge local size jumps.

8.2.5

inline void put_on_free (Prev_next& free list)

Put on the free list

Put on the free list. Only ptr and num are setup prev_, next_ are not valid by
design

8.2.1

static const size.t best_align_

Bit toggle flag specifing whether memory alignment is best possible

Bit toggle flag specifing whether memory alignment is best possible. If this bit
is not set then memory can potentially be combined into a bigger contiguous
block

8.3

struct Sys_block

Sys_block struct is for use as a simple linked list inside the Memory_pool class

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling M
Malte Zickler

8 What’s in Memory_pool. H?

Members
Sys_block* mext Pointer to next block in linked list
void* address Actual address to top of huge sys-
tem retrieved block
Sys_block () Default Constructor.
Sys_block (const Sys_block& sb)
Copy Constructor. For com-
pletness ond to remove compilier
wWarnings
Sys_block&

operator= (const Sys_block& rhs)
Equals operator. For completness
and to remove compilier warnings

Sys_block struct is for use as a simple linked list inside the Memory_pool
class. The linked list represents all blocks retrieved by the system that are cur-
rently in use or on free list. This class could be nested class inside Memory _pool
but alas some compiliers are behind the times.

8.4

class Memory_pool

Memory_pool is a power of 2 queue memory allocator that provides memory
always aligned to the requested size

Inheritance

8.4
Memory _pool

9
l-—) Memory_manager

This page has been automatically generated with DOC-+-+

DOC++ is 1995 by Roland Wunderting 80
Malte Zickles

8 What’s in Memory_pool. H?

Public Members

static Memory_pool*

clone () Creates a unique instance of the
Memory_pool class using a Single-
ton pattern
8.4.7 bool legal_address (void *user_address)

Check if given address is a legal
address that user is currently al-
lowed to release back too use 82

inline void*
meinory (sizet siz)
Provide memory to user of at least
siz+sizeof(size_t}) bytes alignment
guaranted to be >= the total size

void release (void *v) Return the memory back to free
list combining the memory into
larger chunks if possible to prevent
memory fragmentation

virtual ~“Memory _pool () Default destructor gives mem-
ory back to system regardless of
whether the memory has been re-
leased

void report (ostream& out)
Report out diagnostics about
present memory pool usage

Protected Members

Memory_pool () Default constructor

Memory_pool is a power of 2 queue memory allocator that provides memory
always aligned to the requested size. Memory_pool retrieves large blocks of
memory from system and splits this memory into aligned chunks of memory.
As requests for memory are processed larger chunks of memory are split even
further and provided to the user. As memory is released back to the pool it is
combined back into larger chunks.

This is a special purpose memory manager that always returns memory
aligned on the size requested. All requests are increased to:

This page has been automatically generated with DOC4++

DOCH+ is ©1995 by Roland Wunderling 81
Malte Zockler

8 What’s in Memory_pool.H?

nearest power of 2 >= (size requested + sizeof(size_t)).

The intended usage of this class is for large memory
allocations based on integer powers of 2.

Specifically, the Memory_pool is not currently designed
to handle:

1. Very small blocks of memory (few words or less)

2. Memory sizes far from an integer power of 2.
For example, 1.5MB size.

3. Large numbers of small to medium sized allocated
memory requests which really don’t require any
memory alignment restrictions

8.4.7

bool legal_address (void *user_address)

Check if given address is a legal address that user is currently ellowed to
release back too use

Check if given address is a legal address that user is currently allowed to release
back too use. The intended usage is a a checking device for memory. Only call
this function if it is ok to send a message to cerr stating the user_address is not

legal.

This page has been automatically generated with DOC++

DOC++4 is (©1995 by Roland Wunderling 82
Malte Zockier

Memory_manager

9

class Memory_manager : public Memory_pool

Inheritance

8.4

Memory management class

Memory pool —\L

9

Memory_manager

Public Members

Memory _manager (const Memory_manager& self)
Calling The copy constructor is
explicitly disabled since we are a
Singleton class

static Memory_manager*
clone () Creates a unique instance of the
Memory_manager class using o
Singleton pattern
static size_t
delete _clone () Destruct the clone
9.4 inline void
update_newed (const size_t amount)
Update the amount of memory on
the heap 84
9.5 inline void
update_deleted (const size_t amount)
Update the amount of memory on
theheapcoviiiiiiiniiia.. 85
9.6 inline void
update_popped (const size_t amount)
Update the amount of memory on
the stack 85
9.7 inline void
This page has been automatically generated with DOC++ 83

DOC++is ©1995 by Roland Wunderling

Malte Zickler

9 Memory_manager

update_pushed (const size_t amount)
Update the amount of memory on
the stack 85

inline void*
new_aligned (size_t size)
Obtain memory from Mem-
ory_pool aligned on a power of 2
associated with the requested size
inline void
release_aligned (void *v, const size_t size)
Released memory obtained by call-
ing new_aligned member function

void report (ostreamé& os)
Print out the memory usage statis-
tics to the given outpul ostream

9.8 virtual “Memory_manager ()
Default destructor 85

Memory management class. This is a global singelton class. It keeps track
of how much memory we have used. It keeps track of both stack memory and
heap memory. File Memory manger.H

9.4

inline void update newed (const size_t amount)

Update the amount of memory on the heap

Parameters: amount — The amount of memory just added by new.

9.5

inline void update_deleted (const size_t amount)

Update the amount of memory on the heap

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling 84
Malte Zckler

9 Memory_manager

Parameters: amount — The amount of memory just deleted by delete

9.6

inline void update_popped (const size_t amount)

Update the amount of memory on the stack

Update the amount of memory on the stack. The class or method that allocates
stack memory needs to call this.

Parameters: amount — The amount of memory just added.

9.7

inline void update_pushed (const size_t amount)

Update the amount of memory on the stack

Update the amount of memory on the stack. The class or method that allocates
stack memory needs to call this.

Parameters: amount — The amount of memory just deleted.

9.8

virtual “Memory_manager ()

Default destructor

Default destructor. Only deletes the Memory. manager for the last reference.

This page has been automatically generated with DOC++4

DOC++is (©1995 by Roland Wunderling 85
Make Zdckler

10 Monitor

10

class Monitor : public Mutex

This allows us to track useage of a critical section and guarentee exclusive
access when needed

Inheritance
12

Mutex —\L

10
Monitor

Public Members

inline Monitor () Default constructor: initializes the
Monztor

inline ~“Monitor () Default destructor: destroys the
Monitor

inline void
lock () Request exclusive access to this
Monitor

inline Monitor&
operator+- () Request non-exclusive access to
this Monitor

inline Monitor&
operatort+ (int) Request non-exclusive access to
this Monitor

inline Monitoré&
operator— () Inditate that we are finished with
non-exclusive access to this Moni-
tor

inline Monitor&
operator— (int) Inditate that we are finished with
non-exclusive access to this Moni-
tor

This page has been automatically generated with DOC++

DOC4++ is ©1995 by Roland Wunderling 86
Malte Zickler

10 Monitor

This allows us to track useage of a critical section and guarentee exclusive
access when needed. This is called a semaphore in some circles, but (unfortu-
nately), POSIX semantics consider a semaphore to be something quite different.
This is particularly useful if you have many threads reading some data, but you
want to guarentee that you’re the only thread writing the data. This is accom-
plished as follows:

Reading Thread Writing Thread
monitor.lock();

data.write();
monitor.unlock();

monitor++;
data.read();
monitor-—;

see, there can be numerous threads reading at once, but as soon as a writing
thread comes along, no other readers can enter the critical section until the
writer is done. Likewise, the writer can’t start until all the readers have left.

This page has been automatically generated with DOC 4+

DOC++ is (91995 by Roland Wunderling 87
Malte Zockler

11 Static

11

#define Static

If we have threads then the word ”Static” will be ” ” else it will be ”static”

If we have threads then the word ”Static” will be ” 7 else it will be ”static”.
This will allow us to turn on and off the use of temporaries based on threads

This page has been automatically generated with DOC++

88

DOC++ is (©1995 by Roland Wunderling
Malte Zockler

12 Mutex

12

class Mutex

Provide o basic thread locking mechanism

Inheritance

12
Mutex

L 10
Monitor

Public Members

12.1 Mutex () It is assumed we are running the
POSIX_THREADS 89

Mutex (const Mutex&)
- Copy constructor

12.1

Mutex ()

It 1s assumed we are running the POSIX_THREADS

It is assumed we are running the POSIX_.THREADS. For the DCE threads
change the NULL to be pthread_mutexattr_default.

This page has been automatically generated with DOC 4+

DOC++ is ©1995 by Roland Wunderling 89
Malte Zockler

13 What'’s in Oct_tree.H?

13

What’s in Oct_tree.H?

Names

13.1 template <class Type> union
Oct_data Oct_date ¢ wunion of wvarious
pointer tYpes ..o 90

The Oct_tree class partitions 3-D space into quantized bins to enable quick
searches that have the traditional time vs memory trade-off 13.2

13.1

template <class Type> union Oct_data

Oct_data a union of various pointer types

Members
Oct_data <Type> *
oct_ptr Pointer to Oct_data< Type>
A a (Type) Potinter to array containing point-

ers to items which all have identi-
cal quantized positions

Oct_data <Type> *
oct [§] Arrey of 8 pointers to
Oct_data< Type>s
inline Oct_data <Type> *
item (const int i) Returns a pointer to the i’th item

relative to the this pointer (not the
usual *this)

template <class R_a_array> inline void*
ref (R.a_array& ra)

Returns the reference wvalue for
this Block within the R_a

Oct_data a union of various pointer types. The is a helper union to encapsu-
late some of the most common uses of the Oct_tree Reference Nc_arrays.

This page has been automatically generated with DOC++

DOC++ is @1995 by Roland Wunderling 90
Malte Zockler

13 What’s in Oct_tree.H?

13.2

template <class T)ge, class PosType, class ObjType, class
TagType> class Oct_tree

The Oct_tree class partitions 3-D space into quantized bins to enable quick
searches that have the traditional time vs memory trade-off

Public Members
13.2.6 Oct _tree () Default constructor 93

Oct _tree {Oct_tree& oct)
Default copy constructor

13.2.7 void initialize (ObjType* obj., Vector<PosType>& lo_,
Vector<PosType>& hi_,
const PosType small, const PosType tol_,
IntType hash_bits_, bool tagging_)
Initialize the Oct_tree 93

void filled_sectors (A _a(size_t)& sectors)
Fills in Given array with a list of
ull hash table sectors that have at
least one item in it

size t num sectors () Returns the number of hash table
sectors in the Oct_tree

inline const Vector <PosType> &
position (Type *data)

Return a reference to position vec-

tor calling user’s pos_ref function

inline TagType
tag (Type *data) Return the tag by calling user’s
tag() function

13.2.8 Type* find_near (const Vector<IntType>& p,
const TagType* tag.)
Find a nearby item in the Oct_tree

13.2.9 void remove (Type* user_item)

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Wunderling
Make Zickler

91

13 What’s in Oct_tree.H?

Remove a given item from the
Octtreecccovviieennn.... 94

13.2.10 inline void
insert (Type** at, Type* data)
Insert data item at supplied ad-
ATESS oot 95

13.2.11 inline Type*
find (const Vector<PosType>& pos,
const TagType* tag_, Type**& dummy)
Find date item ot given posilion
and return an address if not found

................................ 95
inline Type*
query (const Vector<PosType>& pos,
const TagType* tag_)
Query to see if item exists in
Oct_tree but do not modify the
Oct_tree if item is not found
13.2.12 Type* find (const Vector<PosType>& pos,
const TagType* tag_, bool query,
Type**& dummy)
Find data item at given position
and return en address if not found
................................ 95

void report (ostream& out)
Report Oct_tree diagnostics out

void full_report (ostream &out)
Full report Oct_tree diagnostics

virtual ~Oct_tree () Default destructor.

The Oct_tree class partitions 3-D space into quantized bins to enable quick
searches that have the traditional time vs memory trade-off. Given a position
in 3-D space this class finds if something is in same bin. If tagging is enabled
then a position and tag define uniqueness.

The Oct tree algorithm converts a floating point representation into an in-
teger where each bit represents a level of an 8%*n tree. 8**n comes about by
dividing x,y,z space each into 2**n 1-D partitions. By MASKing the bits one
can quickly determine the one of 8 slots to go down at a given level. A hash
table is used to bypass the first hash_bits of levels. Items with identical
positions but unique tags are legal.

This page has been automatically generated with DOC++

DOC++ is 1095 by Rofand Wunderling 92
Makte Zockler

13 What’s in Oct._tree.H?

13.2.6

Oct_tree ()

Default constructor

Default constructor. The user must call initialize before actually using the
Oct._tree.

13.2.7

void initialize (ObjType* obj., Vector<PosType>& lo_

Vector<PosType>& hi_, const PosType
small, const PosType tol, IntType

hash _bits_, bool tagging_)

Initialize the Oct_tree

Initialize the Oct_tree.

The following variables supplied by the user determine the
behavior and memory overhead for the Oct_tree.

1. ObjType pointer: Object used to extract position
and tagging information

2. Vector<PosType> lo_: Lowest spatial extreme the mesh
will ever be

4. Vector<PosType> hi_: Highest spatial extreme the mesh
will ever be

5. PosType small: Smallest spatial size that the
Oct_tree should be able resolve

6. PosType tol_: Spatial tolerance of the position data.
Floating point representations of numbers within this
range are considered to be identical. The tol_
parameter is in terms of small. For example: 0.01 means
the tol_ is 1 percent of the small parameter. Numbers

This page has been automatically generated with DOC++

DOC++ is @1995 by Roland Wunderling 93
Malte Zickler

13 What’s in Oct_tree.H?

greater than 0.1 are mappped to 0.1 to help prevent
ambiguity when tolerances are large
7. IntType hash_bits_: Number of hashed layers the (ct_tree
is to use. A higher number is faster but uses more
memory. The memory usage for the hash table is
gx*{hash_bits_+1} * sizeof(pointer) ,
8. bool tagging : Dboolean flag to determine if tagging
will be used as a distiguishing feature for
uniqueness

13.2.8

Type* find_near (const Vector<IntType>& p, const Tag-
Type* tag.)

Find a nearby item in the Oci_tree

Find a nearby item in the Oct_tree. This is not guaranteed to be the closest
item. In general however, this member function will return an item within a
Line Of Sight (LOS) of the position. A nearest neighbor may not be found if
the number of hash bits is not set to 0. The user is issued a WARNING in this
regard.

13.2.9

void remove (Type* user_item)

Remove a given item from the Oct_tree

Remove a given item from the Oct_tree. The item must have been inserted in
the Oct._tree or error will result.

This page has been automatically generated with DOC++

DOC++ is (91995 by Roland Wunderling 94
Malte Zockler

13 What’s in Oct_tree.H?

13.2.10

inline void insert (Type** at, Type™ data)

Insert data item at supplied address

Insert data item at supplied address. This address must be obtained by using
the find member functions. Range checks on done on this address to help prevent
bugs but the tests are not full proof. The user must insert immediately after a
find. If the Oct_tree is modified between a find and insert then the operation
becomes ill-defined. Note that even a call to find can modify the Oct_tree.

13.2.11

inline Type* find (const Vector<PosType>& pos, const
TagType* tag., Type**& dummy)

Find date item ot given position and return an address if not found

Find data item at given position and return an address if not found. The user
must insert the item at the given address before the Oct_tree is modified or
errors can result. Note that calling this routine modifies the Oct_tree if the
position is not found.

13.2.12

Type* find (const Vector<PosType>& pos, const TagType*
tag._, bool query, Type**& dummy)

Find date item at given position and return an address if not found

Find data item at given position and return an address if not found. The user
must insert the item at the given address before the Oct_tree is modified or
errors can result. Note that calling this routine modifies the Oct_tree if the
position is not found and query is not set to true.

This page has been automatically generated with DOC++

DOC++ is ©1095 by Rofand Wanderling 95
Malte Zackler

14 What’s in Rb_tree.H

14

What’s in Rb_tree.H

Names
14.1 template <class Key, class Data> class
Rb_data Rb_data class holds the data for a
given entry in o Rb_tree 96

The Rb_tree red black tree class is meant to hold large (many hundreds to
billions) of data items 14.2
A variation of the Red Black tree.

14.1

template <class Key, class Data> class Rb_data

Rb_data class holds the data for a given entry in a Rb_tree

Public Members
inline Rb_data () Default constructor.

inline Rb_data (Rb._data<Key, Data>* lef, Rb_data<Key,
Data>* righ, Rb_data<Key, Data>* par,
Key& ky, Data& dat, Color col)
Constructs a Rb_tree given left,
right, parent, key, data, and

color
inline Rb_data <Key, Data> *&
right () Returns a reference to the right

Rb_date pointer

inline Rb_data <Key, Data> *&
left () . Returns a reference to the left
Rb_data pointer
inline Rb_data <Key, Data> *&
parent () Returns a reference to the parent
Rb_data pointer

inline Color&

This page has been automatically generated with DOC++

DOC++ s (©1995 by Roland Wunderling 96
Malte Zdckler

14 What’s in Rb_tree.H

color {) Returns a reference to the color for
this Rb_data

inline Key&

key () Returns reference to key for this
Rb_data
inline Key key_copy () Returns a copy of the key
inline Data&
data () Returns reference to dote for this
Rb_data
inline Data
data_copy () Returns a copy ogf the data for this
Rb_data

inline Color
red () Returns the enum velue of red
inline Color
black () Returns the enum value of black
14.1.1 inline void
relocate (Rb_data<Key, Data>*)

Free_list requires a relocate func-
HOTL ot 98

Protected Members

enum Color Enumeration that determines the
color for this Rb_data
Rb_data <Key, Data> *
left_ Points to a Rb_data item less than
the current daota
Rb_data <Key, Data> *
right _ Points to o Rb_data item less than
the current data

Rb_data <Key, Data> *

parent _ Points to the parent in this red
black binary tree
Key key_ The key belonging to this Rb_data
Data data_ The data belonging to this Rb_data
Color color_ The color of this Rb_data

This page has been automatically generated with DOC-++

DOC++ is (©1995 by Roland Wunderling 97
Malte Zockler

14 What’s in Rb.tree.H

Rb_data class holds the data for a given entry in a Rb_tree. The class could
be a nested class of Rb_tree but some compiliers don’t like nested classes yet.
Rb_data holds a left, right, and parent pointer, a key and a data item

14.11

inline void relocate (Rb_data<Key, Data>*)

Free list requires a relocate function

Free list requires a relocate function. This function is empty.

14.2

template <class Key, class Data> class Rb_tree

The Rb_tree red black tree class is meant to hold large (many hundreds to
billions) of data items

Public Members
Rb_tree () Defoult constructor

Rb_tree (Index capacity.)
Constructor with capacity of size
inline void
insert (const Key& key, const Data& dat)
Inserts a data item into the red
black tree overriding data if it al-
ready exists in the tree

14.2.2 inline Data*
insert {(const Key& key)
Returns the address where data
should be entered for this key ... 100

inline Data*
find (const Key& key)
Returns pointer to data if item is
in red black tree else 0

inline void

This page has been automatically generated with DOC++

DOC+-+ is @199 by Roland Wunderling 98
Malte Zckler

14 What’s in Rb_tree.H

remove {const Key& key)
Removes data item associated with
provided key

inline Index

size () Returns the number of items in
this tree
void reinitialize () Reinitializes the red-black tree

inline void
un_ordered (Index idx, Key& key, Data& dat)
Returns the i’th non-ordered key
and data item in the tree

inline void
un_ordered _key (Index idx, Key& key)
Returns the i’th non-ordered date
item in the tree

inline void
un_ordered_data (Index idx, Data& dat)
Returns the i’th non-ordered data
item in the tree

The Rb_tree red black tree class is meant to hold large (many hundreds to
billions) of data items. For smaller data sets use the Registry or Sorted array
classes. There are significant memory and cpu overheads associated with using
the Rb_tree.

While there are significant memory and cpu overheads, the insertion deletion,
and find algorithms all assumptotically approach constant time for huge data
sets.

The rotation, insertion and deletion member fuctions were adapted from c
version of red black tree:

" By Thomas Niemann and is available on <A NAME="tex2html8"
HREF="http://www.geocities.com/SoHo/2167/book.html">
his algorithm collection webpages.
This code is not subject to copyright restrictioms.

They have been modified to use Reference arrays. The functions have also been
extended to work with data in a Registry fashion rather than just raw data.

Note that this implementation of the Rb_tree does not own the data but

This page has been automatically generated with DOC++

DOC++ is @1995 by Roland Wunderling 99
Makte Zockles

14 " What’s in Rb_tree.H

holds pointer to the data. It does own the keys.

14.2.2

inline Data* insert (const Key& key)

Returns the address where data should be entered for this key

Returns the address where data should be entered for this key. It is
the callers responsibility to set the data up after being given this address.

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling 100
Malte Zockier

15 Reference

15

template <class Type> class Reference

This creates a reference (6) to T data that is usually newed

Public Members

const Type*
data () const The const member functions are
required by Array classes

const Type&
data {(const Index i) const
The const member functions are
required by Array classes

This creates a reference (&) to T data that is usually newed. We must keep
track of when the data moves and update the relocate_ref() member function.
The sneekyness going on here is that we really have a pointer to an array of data
but use data like it is a reference to a single data item. This amounts to one less
dereferencing of a pointer and works for contiguous memory arrays. At present,
there is a significant speed up over conventional pointer to array dereferencing.
We might not need this class as compiliers mature. Use this class by inheriting
this class and calling relocate ref when data moves.

This page has been avtomatically generated with DOC+-+ 1
DOC++4 is (©1995 by Roland Wunderling 01
Malte Zockler

16 What’s in Registry.H?

16

What’s in Registry.H?

Names

16.1 template <class Key, class Data> class
Key_data The Key_data<Key, Data> class
concatenates Key and Date into a
single structure where the compar-
ison operators are based soley on

the Keycoooiiiiiiiiin.n 102
16.2 template <class Key, class Data> class
Registry The Registry class allows insertion
and removal of data based on a key
that is stored with the data 104

Implements the Key Data and Registry templatized classes.

16.1

template <class Key, class Data> class Key_data

The Key_data<Key,Data> class concatenates Key and Data into a single
structure where the comparison operators are based soley on the Key

Public Members
Key_data () Default constuctor
Key_data (const Key& k_, const Data& d)

Construct a Key_data given key
and data

Key_data (const Key& k.)
Constructor based on key alone.
(Data is isgnored)

Key_data (const Key_data<Key, Data>& kd)
Copy constructor

inline bool

This page has been automatically generated with DOC++

DOC++is (©1995 by Roland Wunderling 102
Malte Zockler

16 What’s in Registry. H?
operator == (const Key_data<Key,
Data>& rhs) const
== comparison operator based
solely on key
inline bool
operator '= (const Key_data<Key,
Data>& rhs) const
!I= comparison operator based
solely on key
inline bool
operator > {const Key_data<Key,
Data>& rhs) const
> comparison operator based solely
on key
inline bool
operator >= {(const Key_data<Key,
Data>& rhs) const
>= comparison operator based
solely on key
inline bool
operator < (const Key_data<Key,
Data>& rhs) const
< comparison operator based solely
on key
inline bool
operator <= (const Key_data<Key,
Data>& rhs) const
<= comparison operator based
solely on key
inline Key_data&
operator= (const Key_data& kd)
= equals operator
inline const Datad
dat () const Return a reference to the data
inline Data&
dat () Return a reference to the data
inline const Key&
key () const Return a reference to the key
inline Key&
key () Return a reference to the key

This page has been automatically generated with DOC++

DOC++ is (©1995 by

Roland Wunderling
Maite Zockler,

103

16 What’s in Registry.H?

Protected Members

Key k The key that unlocks the data
Data data_ The data stored for a given key
16.2

template <class Key, class Data> class Registry

The Registry class allows insertion and removal of data based on a key that is
stored with the date

Public Members
Default constructor

Registry (const Index size = 0)
Construct a registry of given size

Registry (const Registry<Key, Data>& reg)
Copy constructor

inline Index
insert {const Key& k, const Data d)
Insert o key and its associated
data item
nline void
remove (const Key& k)
Remove the key and its associated
data item

inline Data
reg_data (const Key& k)
Return a copy of the data associ-
ated with the key

inline const Data&
ref_data (const Key& k)
Return a reference of the data as-
soctated with the key

16.2.2 inline Data
find _data (const Key& k)
Returns a copy of the data given a
key oo 106

inline Data&

This page has been automatically generated with DOC++

DOC++ is @©1995 Rofand Wunderli 104
C by Mahe Zockier "8

16 What’s in Registry.H?
insert_data ref (const Key& k)
This is not thread safe - be sure to
lock down array before use
inline Data
operatorf} (const Index i) const
Get the i’th date value in the array
inline Data

operator[] (const Index i)
Get the i’th data value in the array

16.2.3 inline Data&

operator() {const Index i)
Get o reference to the i’th dato

value in the array 106
inline Key key (const Index i) const
Return a copy of the i’th key
inline Key&
key _ref (const Index i) const
Return a reference to the i’th key
16.2.4 inline Index
find _position (const Key& k) const
Find the given key’s position in the
TEGISITY ..ot 106
16.2.5 inline Index
find _position (const Key& k, bool* exists)
Find the given key’s position in the
TEGISETY .o 107
inline Index
size () const Returns the number of items in the
registry
inline void
capacity (const Index cap)
Sets the Registry’s current capac-
ity of the registry
inline Monitor*
monitor () Returns the Array’s monitor that
contains keys and dala
void report () Report out diagnostics ebout this
registry
This page has been automatically generated with DOC++ 105

DOC++ is (©1995 by

Roland Wunderling
Malte Zockler

16 What’s in Registry. H?

“Registry () Default destructor

The Registry class allows insertion and removal of data based on a key that
is stored with the data. Redundant keys are NOT reinserted!

16.2.2

inline Data find_data (const Key& k)

Returns a copy of the data given a key

Returns a copy of the data given a key. Returns 0 of the key is not valid. Call-
ing this function makes sense only when data = 0 is meaningful.

16.2.3

inline Data& operator() (const Index i)

Get a reference to the i’th data value in the array

Get a reference to the i’th data value in the array. Not thread safe. Lock down
the array before use.

16.2.4

inline Index find_position (const Key& k) const

Find the given key’s position in the regisiry

Find the given key’s position in the registry. This index is only guaranteed to
correspond to given key until next insert or remove is called

This page has been automatically generated with DOC++

DOC++ is @©1995 by Roland Wunderling 106
Malte Zockler

16 What’s in Registry.H?

16.2.5

inline Index find_position (const Key& k, bool* exists)

Find the given key’s position in the registry

Find the given key’s position in the registry. Sets boolean flag to true if it exists
else false. This index is only guaranteed to correspond to given key until next
insert or remove is called

This page has been automatically generated with DOC++

DOC++ is (1995 by Roland Wundeling 107
Malte Zackles

17 RetrieverTask

17

enum RetrieverTask

Retriever task enumeration defininy types of tasks currently supported by the
Retriever class

This page has been automatically generated with DOC++-

DOC+-+is (©1995 by Roland Wunderling 108
Malte Zockler

18 Retriever

18

template <class Type, class SendData, class RtnData> class
Retriever

The following class is a quick attempt at a Retriever class

Public Members
FuncPtr func_ptr (int task_type)
Returns the function pointer asso-
ciated with given task type

18.5 Retriever (int task, Type *controller.,
Communicator& communicator.,
int comm_tag., PmemFunc pmf.)
The Constructor sets up a Thread
to perform a ThreadTask 111

18.6 static void*
single_data_sync (void *untyped_ptr)
This member function is called
when the Thread receives a request

inline void
no_op () Does nothing but calm the ansi
compiliers from warning about
lack of usage of Retriever objects

"Retriever () Default destructor

The following class is a quick attempt at a Retriever class.

A general ” user provided” member function is possible but not implemented.
Instead a user must overload the retrieve function for a given class.

The intend is to overload the Constructor with different args to create
threads that perform different types of Threading tasks. For example, a very
general mechanism can be achieved by overloading retrieve function that accepts
a Send and returning a Recv buffer. In other words, This class ”encapsulates”
the use of the Thread object.

A Retriever is something that manages a Thread. It constructs a Thread
for a special purpose and destroys the Thread after completion. For certain
Retriever tasks, an implicit barrier is setup in the destructor so that all procs
in communicator must call the Retriever object’s destructor before any of the

This page has been automatically generated with DOC++

DOC++ is @1995 by Roland Wunderfing
Malte Zockles

109

18 Retriever

other processor’s destructors return to join with the thread of execution which
spawned the request.

- This class is very heavy weight and should be used when dozens or hundreds
of messages are to be passed. This class is not meant for millions of requests.
No buffering is done and the destructor could be expensive.

Restrictions:

1) Any member function of a class can be used but the member function
must have exactly 2 arguments and be able to deal with requests from a foreign
proccessor. The two arguments are sent data type and returned data type.

COMMENT BELOW is only relavant to SINGLE_DAT SYNC

2) Although this allows any number of sends and receives without any user
burden. There is an implicit barrier (destructor won’t return until all destructors
are called) which is Usually but not always what the user wants.

So a typical usage might be:
{ Retriever retriever(RetrieverTask,
communicatior,
controller,

COMM_TAG,
member_function called when retrieving);

controller->member_function(retriever, data);

any user source code. ..

controller->member_function(retriever, data);

any user source code...

o<,
]
I
‘ The closing braces implicitly calls destructor
and all cleanup is done automatically.

User burden limited to comstructor arguments. No Threading code

This page has been automatically generated with DOC+4+

DOC++ is @199 by Roland Wunderling 110
Malte Zckler

18 Retriever

required.

18.5

Retriever (int task, Type *controller_, Communicator&
communicator, int comm_tag_, PmemFunc

pmf.)

The Constructor sets up & Thread to perform a ThreadTask

The Constructor sets up a Thread to perform a ThreadTask. A RetrieverTask is
a simple enumeration that corresponds to a static member function of this class
which is the executable the Thread will actvally run. The member function
handles the management of the Thread. The actual data exchange is handled
by the object passed to this constructor. The Communicator and comm_tag are
used by the executable run by the Thread.

18.6

static void* single_data_sync (void *untyped_ptr)

This member function is called when the Thread receives a request

This member function is called when the Thread receives a request. Only a
single data item is sent and received.

This page has been automatically generated with DOC-+-+

DOC++ is (1995 by Roland Wunderling 1]'1
Malte Zockler

19 RunTime

19

class RunTime

Times a program (or anything else you desire)

Times a program (or anything else you desire). Roughly accurate to the mi-
crosecond (depending on the underlying implimentation).

This page has been automatically generated with DOC++

DOC++ is (1995 by Roland Wunderling
Malte Zockler

112

20 What’s in Sparse_matrix.H?

20
What’s in Sparse_matrix.H?

Names
class

template <class Column, class Data>

201
Sparse_matrix_row : public
Container<Key data<Column,

Data>,
Sorted_Array<Key_data<Column,

Data> > >
The Sparse_matriz_row is a deco-

rated Sorted_Array container that
provides a few additional services

template <class Row, class Column, class Data> class
The Sparse_matriz is a simple

20.2
Sparse_matrix
convenience class for holding en-
tries in a sparse matrix 114
Declares and implements a simple Sparse_matrix class.
20.1
Data> class

template <class Column, class
Sparse_matrix_row : public Container<Key_data<Column,

Data>, Sorted_Array<Key_data<Column, Data> > >

The Sparse_matriz_row is a decorated Sorted_Array conteiner that provides a

few additional services

Inheritance
Array —1
1.9
Container ‘—1
20.1
Sparse_matrix._row

113

This page has been automatically generated with DOC++
DOC++ is ©1995 by Roland Wunderling
Malte Zackler

20 What’s in Sparse_matrix.H?

Public Members

Sparse_matrix._row ()
Default constructor.

Sparse_matrix_row (const Row_Type& row)
Copy constructor.

inline Data&
operator) (const Column& col)
Returns a reference to the Data
gwen o Column key

The Sparse_matrix_row is a decorated Sorted_Array container that provides
a few additional services. This class is an interface class to rows of the
Sparse_matrix class;

20.2

template <class Row, class Column, class Data> class
- Sparse_matrix

The Sparse_matriz is a simple convenience class for holding eniries in o sparse
matric

Public Members

typedef Sparse_matrix_row <Column, Data>
Row_Type Provides a convenient typedef for
users to obtain a handle to the cor-
rect type of an row

Sparse_matrix (Sstring filename, Index flush_int)
Construct sparse matriz setting up
the filename and flush interval
inline void
check_access () checks access useage and flushes

matriz to file in access_count
greater than flush_interval

inline Datad
operator) (const Row& row, const Column& col)
Returns a reference to the data in

the malriz entry for given row and
column

void flush_row (Row& row, Row_Type& column_dat)

This page has been automatically generated with DOC 4+

DOC++ is (©1995 by Roland Wunderling 1 1 4
Malte Zockler

20 What'’s in Sparse.matrix.H?

Flush a row to disk writing row
column data for each item in row

void flush_to_file () Forces a flush to file of all conlents
currently held in memory

The Sparse_matrix is a simple convenience class for holding entries in a sparse
matrix. The matrix is a two dimensional array of items.

This is not a general purpose sparse matrix class. The intended useage of
this class is to incrementally fill a sparse matrix that, in general, may not fit
in memory. The rows and column indices are templatized types with the most
popular intended types of row, column being integral types.

For simplicity, we will optimize the use of row insertion and layout the
memory accordingly. As a side-effect of this row overhead will be significantly
higher (10 words or so). The column entry overhead will be one Column type
and one Data type.

There are many bells and whistles that could be added to this class. At
present this class is overly minimalistic.

There are no remove or deletion member functions since it is difficult to
retrieve things flushed to disk efficiently. The user can get this effect by doing a
-= of the current contents. Unfortunately, if the contents have been flushed to
disk then the user has no easy way to know the final value of a (row,col) entry
in the matrix.

Caveats: A performance assumption assumes that the number of
column entries in a given row is relatively small
(say typically less than a few hundred). If the
average number of column entries exceeds 100-200
then a specialization of this class would be in order
to bypass the Sorted array insertions which are
of O(N+N) where N is the number of entries in a
given row.

This class makes no assumptions of Row and Column
indicies being contiguous or even being of integral
type. What is required are the usual comparison
functions and output >> operator for writing

to disk.

Future specializations of this class could take advantage

contingous (or nearly so) indices.

This page has been automatically generated with DOC++

DOC++ is (@ 1996 by Roland Wunderling 115
Matte Zickler

20 What’s in Sparse_matrix.H?

This page has been automatically generated with DOC++

DOC++ is (91995 by Roland Wunderling
Malte Zockler

116

21 Sstring. H

21

#define Sstring.H

This Sstring class allows us to convert between various data types in addition
to the usual string class utilities.

Sstring does not provide full functionality yet. The philosophy taken here is
to build new functionality as needed.

Historical note: We tried using STL string classes several times but had
difficulty extending it and a great deal of difficulty dealing with our limited
debuggers. We rely heavily on Sstrings and the debuggers could not always
parse through STL correctly.

This page has been automatically generated with DOC+-+

DOC++ is ©1995 by Roland Wunderling 117
Malte Zockler

22 Sstring

22

class Sstring

The Sstring class allows us to convert between various data types in addition
to the usual string class utilities

Public Members

friend inline ostream&
operator<< (ostream&, const Sstring&)
Allow ostream to be a friend of this
class

friend istream&
operator>> (istream&, Sstring&)
Allow istream to be a friend of this
class

friend Sstring
operator (const Sstring&, const Sstring)
Allow global operator+ Sstring +
String to be overloaded

friend Sstring
operator+ (const char*, const Sstringé&)
Allow global operator+ char* +
String to be overloaded

friend Sstring
operator-+ (const Sstring&, const char*)
Allow global operater+ Sstring +
const char* to be overloaded

Sstring () Default constructor

Sstring (const Sstring &sl)
Copy constructor

Sstring (const char *sl)
Specialized copy constructor for
char*’s

Sstring (const char *sl, size_t num)
Specialized copy constructor for
fized number of chars

Sstring (const short num)

This page has been automatically generated with DOC++

DOC++ is @1995 by Roland Wunderling 118
Malte Zockler

22 Sstring

Specialized copy constructor for
short’s

Sstring (const unsigned short num)
Specialized copy constructor for
unsigned short’s

Sstring (const int num)
Spectalized copy constructor for
ints’s

Sstring (const unsigned int num)
Specialized copy constructor for
unsigned int’s

Sstring (const long num)
Specialized copy constructor for
long’s

Sstring (const unsigned long num)
Specialized copy constructor for
unsigned long’s

Sstring (const long long num)
Specialized copy constructor for
long ints’s

Sstring (const float num)

Specialized copy constructor for
floats’s

Sstring (const double num)
Specialized copy constructor for
doubles’s

Sstring (const bool val)
Specialized copy constructor for

booleans’s
22.3 ~Sstring () Default destructor 121
size_t size () const Return the string length in bytes

SSTRING_OP DEF(==)(!=)(>)(>=)(x)
(<=) (const unsigned int i)
== operator

Sstring& operator = (const Sstring &sl)
Assignment operator

Sstring& operator = {const char *s1)

This page has been automatically generated with DOCH+

DOC++ is 91995 by Roland Wunderling 119
Malte Zockler

22 Sstring
Specialized assignment operator
for char *’s
Sstringdz operator 4= (const Sstring &sl)
Concatenates sl to end of Sstring.
Sstringdz operator += (const char *rhs)

Concotenates char* to end of
Sstring.

operator const char* () const
User defined conversion from
const char® to Sstring

operator char* () User defined conversion from
char* to Sstring

operator bool () const
User defined conversion operator
from Sstring to boolean

operator short () const
User defined conversion operator
from Sstring to short

operator unsigned short () const
User defined conversion operator
from Sstring to unsigned short

operator int () const
User defined conversion operator
from Sstring to int

operator unsigned int () const
User defined conversion operator
from Sstring to unsigned int

operator long () const
User defined conversion operator
from Sstring to long

operator unsigned long () const
User defined conversion operator
from Sstring to unsigned long

operator float () const
User defined conversion operator
from Sstring to float

operator double () const

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling
Malte Zockier

22 Sstring

User defined conversion operator
from Sstring to double

template <class Type>
operator Type* () const
User defined conversion operator
from Sstring to a pointer of an ab-
stract type

void pack (Send& buf) const
Pack this string into a Send buffer
for communication

void un_pack (Recv& buf)
Unpack this string from a Recv
buffer for communication

Protected Members

22.1 char* s Our character string s 122
22.2 void copy {const char *sl)
Copy the character string sl to our
SIFING S i 122

The Sstring class allows us to convert between various data types in addition
to the usual string class utilities.

Sstring does not provide full functionality yet. The philosophy taken here is
to build new functionality as needed. One of the main reasons for this class is to
bypass dealing with STL string class in the debugger. Also we are transparent
(syntatically and Memory layout) the C sstring class.

— 22.3

~Sstring ()

Default destructor

Default destructor. Frees memory if s = 0 Never inherit from this class. Note
that this destructor is not virtual.

This page has been avtomatically gencrated with DOC++

DOC++ is (D1995 by Roland Wunderling 121
Malte Zockler

22 Sstring

22.1

char* s

Our character siring s

Our character string s. It is the first and only data item in this class so that its
usage can be as close as possible with the normal sstring class. In particular, the
memory layout should be identical so Sstring and string’s can be used without
conversions.

22.2

void copy (const char *sl)

Copy the character string sl to our string s

Copy the character string sl to our string s. We new a full copy. To help
prevent memory leaks we force the caller of this routine to have set s to Q.

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling 122
Malte Zéckler

23 operator>>

23

extern istream& operator>> (istream &i, Sstring &s1)

The following definitions are defined in Sstring

The following definitions are defined in Sstring.C to prevent multiple defini-
tion WARNINGs.

This page has been automaticaily generated with DOC+-+

DOC++is ©1995by Roland Wunderling
Malte Zockler

123

24 Sbint

24

typedef long .int Sbint

Typedef abstracting what the Proc_dispenser, Block_index_mapper, and reader
classes think a large Integral type is

Typedef abstracting what the Proc_dispenser, Block_index_mapper, and reader
classes think a large Integral type is. We want these to be long long ints but
all MPI implementations don’t support 64 bits. (Noteably some IBM systems)

This page has been automatically generated with DOC-++ 124

DOC++ s (91995 by Roland Wundeling
Matte Zockler

25 What'’s in Utilities.H?

25

What’s in Utilities.H?

Names

25.1

25.2

25.3

template <class T> void
Tepy (T* p, const T* s, const int sz)
Not thread safe.

template <class T> void
Tset (T* p, T's, const int sz)
Not thread safe

template <class T> class
Alignment Helper class for req_alignment
GCC currently doesn’t like nested
structs that don’t have explicit
constructors

template <class T> static size_t
req.alignment (const T&)
Find the required alignment of a
given type

#define Ntype (Typename)
The Ntype macro adds a "N_” pre-
fix to the argument

#define Type_to_enum_def (AAA)
Now we will spectalize concrete in-
trinsic typesc.oeeiiiiiin.

template <class Type> static size_t

offset_positions (Type ** arr, size_t begin_off,
size.t num_items, size_t* offs)
Given an Array of Type pointers
this function fills in an array of
offset positions for each item in
array teking size and alignment
mto account

126

126

This file contains miscellaneous typdef’s, enums, macros, generic algorithms,
memory management stuff, etc.

This page has been automatically generated with DOC++
DOC++ is ©1995 by Roland Wunderling

Make Zockler

125

25 What'’s in Utilities.H?

25.1

#define Ntype (Type_name)

The Ntype macro adds a "N_” prefiz to the argument

The Ntype macro adds a "N_” prefix to the argument. The following de-
fine converts a given typedef name to an enumeration. This macro is used in
conjunction with the Intrinsic_enum enum above.

25.2

#define Type_to_enum_def (AAA)

Now we will specialize concrete intrinsic lypes

Now we will specialize concrete intrinsic types. Note that pointer and const
variations are NOT taken into account here.

25.3

template <class Type> static size.t offset_positions
(Type ** arr, size_t begin_off, size_t num_items, size_t* offs)

Given an Array of Type pointers this function fills in an array of offset
positions for each item in array toking size and alignment into account

Given an Array of Type pointers this function fills in an array of offset positions
for each item in array taking size and alignment into account. This function
can begin with a beginning offset number of bytes. It is assumed that the 0
offset is aligned for strictest alignment of any data item in the array. This
function returns the total aligned size for this array by padding the size on the
strictest requiried alignment. This allows arrays of these structures to be packed
contiguously.

The Type class must have size() and alignment() functions.

This page has been automatically generated with DOC++ 12
DOC++ is 1995 by Roland Wunderfing 6
Malte Zackler

Class Graph

Class Graph

1.2
Stack Atray | e 6
1.3
Heap Array | i e 10
L) 1.4
Adjustable_Array | ... 17
|_) 1.8
Sorted_Array | .. 28
1.6
Block | e e e 23
1.7
Reference Nc Array | ..o e 25
1.9
Container | i e 31
‘—)‘ 20.1
Sparse_MatIiX TOW | covrernnmnie i 113
This page has been automatically generated with DOC++ 1 27

DOC++ is (©1995 by Roland Wunderling

Malte Zockler

Class Graph

3.1
ComMmMUNICALOT | ot e ittt it et e tannaraee s 36
3.2
ComIN | e e e 38
3.3
MESSBEE | e 45
3.4
1= + Ve A 49
3.5
Recy | e e e 59
5
CommFactory | ... 66
7
Freedist | e e e et i e 69
8.2
Memory StamnP | ettt 75
8.4
Memory_pool | o 80
9
Memory_manager | c.iiniii i 83
This page has been automatically generated with DOC++ 128

DOC++ is @1995 by Roland Wunderling
I

Mahe Zockler

Class Graph

DOC++is 1995 by Roland Wunderling
Malte Zickler

12
MUuUteXx | e et 89
10
MONIOT b e et e e 86
13.2 e
OCtATEE | ettt e e e - 01
14.1 e :
Rbdata | o e 96
14.2
RDBATEE | vttt ettt et 98
15
Reference | et e 101
16.1
Keydata | @ o 102
e 16,2 ey
Registry | oo 104
This page bas been automatically generated with DOC++ 129

Class Graph

18
Retriever | e e 109
19
RunTime | oottt e e e e e, 112
20.2
SPATSE_MALTIX | o eveee it e 114
22
Sstring | e s 118
25.6 X
Alignment | oo 125
This page has been automatically generated with DOC++ 130

DOC++ is ©1995 by Roland Wunderling
Male Zackler

Contents

Contents

Clusse S8

Prpperdie 3

9

1 At_data_ptr — Pointer toan At data
2 At_value_ptr — Pointer to an At value 5
3 Att_init — Used to initialize At_data’s for global Attributes,
clones and coPiesiiieiiiiiii i i ittt 6
4 At_data — Attribute can contain any number of data values
which are species or localciiiiiiiinniinnnnn.. 7
5 At_value — An At _value is a basic wrapper for At_data ...
6 Common_data — Common_dala is is a special type of
7 T 14
7 Local_data — Local_data is a special type of At_value 15
8 Computed _data — Computed_data is a special type of
. A 7 14 - 16
9 Att Notifiee — Anyone who want’s to be notified of new
clones must inherit from this.cccviiiiennn.. 17
10 Attribute — Attribute provides a standard mechanism to
access data and it provides a tree representation of all data
in the problem Spacec.oeunieeiiiiiinrirnennnnns 18
11 tag_to_atts — Global registry of Att_tag * to attributes lists 24
12 att_map_reader — @ good old C style function! 25
13 ENTITY_BLK_SZ — At the moment we will hardwire the
ENTITY_SIZE and ENTITY_MASK here 26
14 EF — Convenience define allows us the following syntaz to
call an Atiribute’s member functions:
Attribute mem_func mem_func.args — — — v v w
EF(Topology)->up_ref(local, u, d) ...coovvvveeiiennan.... 27
15 Entity — An Entity can be used to represent an object con-
sisting of a collection of one or more Attributes 28
15.4 operator(}ovieiii e e 32
15.5 operator() e 32
16 EXIStS OMm ..ottt it ittt it tac et 37
2 €5 £ Vo - 38
18 Factory — A general class to clone objects of a given type 39
19 Token_obj — This is a temporary commment for the Token_ob a1
o L7 7. .
20 Filter — This is a temporary comment for the Filter class 42
This page has been automatically generated with DOC++ 1

DOC++ is ©1995 by Roland Wunderling

Malte Zockier

NQQ() 5
Covs

Contents

21 Initialize — [Initialization class i3 a place holder for items
we want initialized before main is called and destroyed after
main has endedcoouiiiiiii i i e e e 43

22 Expression_operators — Ezxpression_operators class holds
strings that name various operatorsccoveeeinnn. 44

23 CC_operators — Holds the C++ Ezpression operators and
PrECedencesooueunnee ittt i 46

24 parenthesis — Const Ssiring holding parenthesis characters 47

25 white_space — Const Ssiring holding white space charac- 48

T8 tcevacssescccvossnssnnasnnrsracesssereresscnsnanasnunnn

26 (ti?ggt — Const Sstring holding decimal digits 49

27 xdigit — Const Ssiring holding heridecimal digits 50

28 lower_alpha — Const Sstring holding lower case alphabet
CRATACEETS o et it e it e et ia e o1

29 upper_alpha — Const Sstring holding upper case alphabet
CRATACLETS - oot ii ettt et eieneiisannanncarannscaas 02

30 name_char — Const Sstring holding all valid characters
which can constitute a valid C++ variable name 53

31 operator_end — Const Sstring holding set of all characters
that can truncate a token of operator type 54

32 MAX_TOKENS — Mazximum number of Tokens that can
exist in a given SSIFing ...oovveiiiniiinietteeaiaennanns 99

33 MAX_TOKEN_LEN — Mazimum number of characters an
indifidual foken can beoovniiiiiiiiiiiniiiieaa., 56

34 Token kind — Enumeration designating the types of tokens
a string will be parsed intooiiiiiiiiiiiiiananns 57

35 make_tokens — The make_tokens global function parses the
given String into a array of tokens 58

36 convert_to_sstring — Concatenates an Array of Sstrings to
G SINGlE SBETIG <o iv ettt et 59

37 infix_to_postfix — Converts an array of tokens in infiz or-
der to postfiz order using the provided Expression_operators
object to determine operators and precedences 60

38 infix_string to_postfix — Converts a single infiz Sstring
to an array of postfix tokens using the provided FEzpres-
sion_operators object to determine operators and prece-

7 L £ 1 2. 61

39 infix_string_to_postfix — Converts a single infix Ssiring to
a postfixz Sstring using the provided Expression_operators ob-
ject to determine operators and precedences 62

40 SPECIES BLK _S7Z — At the momeni we will hardwire the
SPECIES_SIZE and SPECIES_MASK here

41 Local — Local provides storage space for an Atiribute’s local
data and provides a pointer back to the Entity who’s data it
holds so the Species it belongs to can find all of the Entitys
£ T A Y .

This page has been automatically generated with DOC++ 2

DOC++ is @ 1995 by Roland Wunderling

Maite Zockler

Contents

42 Outer limitsovriiiiiriirieitrreasrnrasonssonsseanan 66
43 Att_info — The Att_info class is a helper class that holds
Attribute specific infomation relative to a particular Species 67
44 Species_info — The Species_info class is a helper class to
Species that holds Species - Species memory relocation in-
FOrmationcceeeeiiiiiiiiiiiiiinirisaetreninaneneenns 69
45 Species — Class Species manages a collection of Entity Lo-
cals (local data for an Entity) that each have an identical set
Of AHTIDULES -« oo ov vttt iii ittt nannnns 70
Class Graphc.iiiiiiiiiiii it iiiiet it e 77
This page has been automatically generated with DOC++ 3

DOC++ is ©1995 by Roland Wunderling
Malte Z&

ke Zockler

1 At_data_ptr

1

class At_data_ptr

Pointer to an Atl_data

Inheritance

1
At_data_ptr

2
L’ At_value_ptr

Pointer to an At_data. Comparisons between At_data_ptrs take place on the
actual At_datas they represent.

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Wunderling
Malte Zackler

2 At_value_ptr

2

template <class Type> class At_value_ptr : public
At_data_ptr

Pointer to an At_value

Inheritance

1
At_data_ptr

2
At_value_ptr

Pointer to an At_value. For conversions between At_data_ptr and At_value*

This page has been automatically generated with DOC-++

DOC++ is 1995 by Roland Wunderling 3
Mate Zockler

3 Att_init

3

struct Att_init

Used to initialize At_data’s for global Attributes, clones and copies

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling 6
Malte Zockler

At_data

4

class At_data

Attribute can contain any number of data values which are species or local

Inheritance

4

At_data

5

‘—) At_value

Public Members

virtual

At_data (const Sstring & nam, Attribute * par)
Constructor celled when making
an At_data for an Attribute’s clone
or copy

~At_data () Destructor to see that our sub-
classes are properly freed

4.1 virtual int compare (const At_data& rhs) const

bool

bool

bool

bool

bool

bool

Compare two different At_data’s

operator< (const At_data& rhs) const
Determine if this At_data is less
than another

operator<= (const At_data& rhs) const
Determine if this At_data is less
than or equal to another

operator== (const At_data& rhs) const
Determine if this At_data is equal
to another

operator!= (const At_data& rhs) const
Determine if this At_date is not
equal to another

operator>= (const At_data& rhs) const
Determine if this Atf_data is
greater than or equal to another

operator> (const At_data& rhs) const

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Wunderling
Malte Zockler

4 At_data

Determine if this At_date is
greater than another

virtual At_data_ptr
copy () Make a copy of ourselves to be
passed around like o bad rumour.

virtual At_data_ptr
create (Sstringé& init_str)
Create a new At_data using based
off the provided string

virtual void
pack (Send&) const
Fill the given buffer to send the
essence of an Al_datao.

virtual void
un_pack (Recv&) Set the At_data to whatever is con-
tained in the Recv buffer.

virtual void
unpack local_data (Local*, Recv&)
Set the At.deta value for this lo-
cal to whatever is contained in the
Recv buffer

Attribute can contain any number of data values which are species or local.
At_data is the abstraction of this data.

4.1

virtual int compare (const At_data& rhs) const

Compare two different At_data’s

Compare two different At_data’s. First, we compare by name, if they’re equal,
we compare by type. This puts the order of At_data’s by type to be: Computed
> Common > Local The At_data’s must be of the same Type of At_value.

Return Value: s -1 if lhs<rhs, 0 if lhs==rhs, 1 if lhs>rhs

This page has been automatically generated with DOC++

DOC++ is @ 1995 by Roland Wunderling 8
Malte Zockler

5 At_value

5

template <class T> class At_value : public At_data

An At_value is a basic wrapper for At_data

Inheritance
4
At_data
5
At_value
7
Local_data
8

—>1 Computed.data

6
L] Common_data

Public Members

LocalArr typedef void
(* FuncPtr) (Entity *, Attribute *, void *ret)
Stgnature of function used by com-
puted data

At_value (const Sstring & nam, Attribute * par)
Basic constructor that creates an
At_value of the proper type and
value

At_value () Default constructor - this is used
by the system (and internally
within At_value) but should never
be used explictly

virtual ~At_value () Run of the mill empty destructor
5.2 T& ref (Local * loc) Get a constant reference to the
data for the given local 12

const T& ref (Local * loc) const

This page has been automatically generated with DOC+-+

DOC++ is 1995 by Roland Wunderling 9
Malte Zockler

At_value

void

void

void

53 Sstring

Sstring

void

void

void

size_t

void

At_data._ptr
copy () Make a copy of ourselves to be

5.4 At_data_ptr
create (Sstring& init_str)

void

Get a constant reference to the
data for the given local

data (Local * loc) const
Get the data value for the given lo-
cal

data (const T& value)
Set the data value to the given

velue - only valid for Common
Data

data (Local * loc, const T& value)
Set the data value for the given en-
tity

set_func (const Sstring& str)

Set the function thet this uses if
it’s computed data

sstring () const Get the value for this At_data as a
SIMNG ..o

sstring (Local * loc) const
Get the value for the given entity
as a string

sstring_value (const Sstring& value)
Use this string to set the value for
this At_data

sstring_value (Local * loc, const Sstring& value)
Use this string to set the value for
this Entity

offset (size_t offs) Set your offset to the given size

offset () const Find out what offset is being used
for this At _value.

array_size (Index sz)
Change the array size

passed around like a bad rumour.

Create a new At_date using based
off the provided string

pack (Send& buf) const

12

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Wunderling
Malte Zockler

10

At_value

void

void

Fill the given buffer to send the
essence of an At_data.

un_pack (Recv& buf)
Set the At_value to whatever is
contained in the Recv buffer.

unpack_local_data (Local* loc, Recv& buf)
Set the At_data value for this lo-

cal to whatever is contained in the
Recv buffer

Protected Members

T

bool
size_t
FuncPtr
Sstring

Index

data_ real data for common, default
data for local (when implemented)

valid _offset for local data
offset_ for local data

fx for calculated data
fx_name for calculated data
arr_size For local_array

static Registry <Sstring, FuncPtr> *

int

void

void

void

void

5.1 void

funcReg for calculated data
owner for communicating local data

data_value (const T& value)
Do the actual work of setting o
value

func_value (Sstring str)
Do the actual work of setting a
function for this computed data

all_data_values (const T& value)
Set the value of this and all copys
of this common data

all_func_values (const Sstring& fxname)
Set the function pointer of this and
all copys of this computed data

set_copy (At_value_ptr<T> copy.obj)
Do the actual work of copying that
a few functions need

This page has been automatically generated with DOCH+

DOC++ is ©1995 by Roland Wunderfing
Malte Zickler

11

5 At_value

5.2

T& ref (Local * loc)

Get a constant reference to the daeta for the given local

Get a constant reference to the data for the given local. Note: this is neither
thread nor comm safe. You have been warned.

5.3

Sstring sstring () const

Get the value for this At_data as a string

Get the value for this At_data as a string. At this level (no associated local*),
we display the array size for Local arrays and the function name for calculated
data.

5.4

At_data_ptr create (Sstring& init_str)

Create a new At_data using based off the provided string

Create a new At_data using based off the provided string. This string has the
format ” At_data-Type Type name value” where At_data-Type is 1 for common
data, 2 for local data, 3 for calculated data or 4 for local array. Type should
match our templated type, the name is just that and the value is the real value
for common data, a default value for local data (not currently used), a function
name {that’s been registered) for calculated data or the size of the local array.

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Wunderling
Malte Zickler

12

5 At_value

5.1

void set_copy (At_value_ptr<T> copy_obj)

Do the actual work of copying that a few functions need

Do the actual work of copying that a few functions need. This sets the value of
the copy based on the value of our member data.

This page has been automatically generated with DOC+-+

DOC++ is 1995 by Roland Wunderling 13
Make Zackler

6 Common_data

6

template <class T> class Common_data : public
At_value<T>

Common_data is is a special type of At_value

Inheritance
4
At_data
5
At_value —\I
6
Common data
Public Members
6.1 T& ref (Local *) This might not be thread-safe -
dato is 14
void data { const T& value)
Set the data velue to the given
value - only valid for Common
Data
void data (Local * loc, const T& value)
Set the data value for the given en-
tity

6.1

T& ref (Local *)

This might not be thread-safe - data is

This might not be thread-safe - data is. This is also not safe for multi-processor
operations.

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Wunderling 14
Malte Zckler

7 Local data

7
template <class T> class Local_data : public
At_value<T>
Local_data is a special type of At_value
Inheritance
4
At_data
5
At_value —1
7
Local_data
Public Members
T& ref (Local *loc) This might not be thread-safe -

data is.

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling 15
© Malte Zockier

8 Computed_data

8

template <class T> class Computed_data : public
At _value<T>

Computed_data is a special type of At_value

Inheritance
4
At _data
5
At_value
8
Computed_data

This page has been automatically generated with DOC-4+

DOC++is (©1995 by Roland Wunderling 16
Malte Zockler

9 Att_Notifiee

9

class Att_Notifiee

Anyone who want’s to be notified of new clones must inherit from this.

Thie page has been automatically generated with DOCH+4

DOC++is (©1995 by Roland Wunderling 17
Malte Zockler

10 Attribute

10

class Attribute

Attribute provides a standard mechanism to access data and it provides a tree
representation of all data in the problem space

Public Members
static Att_init

global ati The global At_data_init used to ini-
tialize the obj_ Atiributes

Attribute (Att_init& ati, const Sstring& nam = "7,
Attribute * par = NULL)
Attribute’s basic constructor -
this does nearly everything except
cleaning the bathroom

10.2 Mutex* lock () Get a Mutex to lock down access to
certain operations of all attributes

................................ 21
static void
assign_gids () Assigns gids to all currently cre-
ated Attributes of both type and
kind ids
int proc_owner (Gid gid)
Returns the processor rank num-
ber owns the given gid for this At-
tribute
10.3 static int nuwm_att_threshold ()
Returns the number of
Attributes (type_ids +
kind_ids} threshold before the
Species::update_att_threshold()
mumber function is called 22
int assign_did (At_data_ptr dat)
Assign a data ID for At_datas.
104 void copy_data (A_a(At_data_ptr)&)

This page has been automatically generated with DOC+-+

DOC++ is ©1995 by Roland Wunderling 18
Malte Zickler

10 Attribute

105

10.6

Get a copy of the data for this At-
tribute ... 22

Attribute* obtain_attribute (const Sstring& clone_name,
const Sstring& dat_name,
const Sstring& dat_value)
Get a clone of this species that
has the given data set to the given
value

Attribute* obtain_attribute (const Sstring& clone_name,
const int dat_id,
const Sstring& dat_value)
Get a clone of this species that
has the given data set to the given
value

virtual Attribute*
clone (const Sstring &, A _a(Sstring)&)
Create a new clone of this At-
tribute type given an array of
Sstrings to initialize its data val-
ues

size t size () const Find the amount of local space this
Attribute requires

size_t alignment () const
Find the local alignment this At-
tribute requires

void offset { const size_t offs)
Set the alignment of all the local
data for this Attribute

static Attribute*
find_att (const Sstring& name)
Find an Altribute given its name

static Attribute*
find _att (const inté& kid)
Find an Attribute given its ID

At_data_ptr
find_dat (const int did)
Find an At_data given its ID

virtual void
init () Perform general initialization af-
ter main() has started 22

virtual void

This page has been automatically generated with DOC+-+
DOC++ is @1995 by Roland Wunderling 19

Malte Zockler

10 Attribute

finalize () Perform shutdown operations at
the end of main() 23
Protected Members
static Registry <Sstring, Attribute *>
att_nam reg All attributes (except species spe-
cific), indexzed by name
static Registry <int, Attribute *>
att_id_reg All attribules (except species spe-
cific), indezed by ID
static Att_Notifiee*
clone_notifiee Hook for mnotification of newly
cloned Attributes
static bool
at_most_one_ Determines if only one of this type
of Att is allowed per Species
static bool
comm._defining_ Determines if this Attribute should
’ be transmitted across processors
A _a (Attribute *) This only needs to be maintained
for the root clone as long as all
copies know who that is
S_a (Species *) Array of species’ that reference us;
A _a (Attribute *) All clones of this type - only stored
by the root_type
S_a (Gid) Array of gid cutoffs to know who
owns a given gid.
A _a (At_data_ptr) pirs to an kind’s data
Registry <int, At.data ptr>
dat_reg All of the data items that this at-
tribute has, indezed by did
Registry <Sstring, At_data_ptr>
dat_nam reg All of the data items that this at-
tribute has, indexed by name
Att_init ati_ Used to initialize copies of the data
This page has been automatically generated with DOC++ 20

DOC++ is @1995 by Roland Wunderling
Malte Zickler

10 Attribute

Attribute* gen_clone (const Sstring &s,
A _a(Sstring)& at_val strs)
This is called every time we need a
new clone of a particular Attribute
defined by an array of strings

template <class Self> Attribute*
gen_clone (const Sstring &name,
A _a(At_data_ptr)& dats, Self *)
This is called every time we need a
new clone of a particular Attribute

10.1 template <class Self> Attribute*
species_copy (Self *, Species * species, int owner)
Species calls this for every At-
tribute in its list 23

void assign_gid () Assign gids to all Entities that
have this Attribute or one of this
Attributes children

Attribute provides a standard mechanism to access data and it provides a tree
representation of all data in the problem space. Tricks: Clones itself to maintain
tree structure across all processors. Copies itself to keep offset to local data
for every species that uses it. Provides unique type_id and kind_id for easy
comparison. Provides constraints to establish acceptable co-existance of two
Attributes.

10.2

Mutex* lock ()

Get o Mutez to lock down access to certain operations of all atiributes

Get a Mutex to lock down access to certain operations of all attributes. Cur-
rently this is just used for cloning to ensure that the clones are constructed in
the same order on all processors.

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Wunderling 21
Malte Zockler

10 Attribute

10.3

static int num_att_threshold ()

Returns the number of Attributes (type_ids + kind_ids) threshold before the
Species::update_att_threshold() mumber function is called

Returns the number of Attributes (type_ids + kind_ids) threshold before the
Species::update_att_threshold() mumber function is called. This allows Species
to be notified when the number of attributes has exceeded some threshold value.

104

void copy_data (A_a(At_data_ptr)&)

Get a copy of the data for this Atiribute

Get a copy of the data for this Attribute. Note that this indirectly news memory
for the At_datas, so they should be freed when you’re done with them.

10.5

virtual void init ()

Perform general initialization after main() has started

Perform general initialization after main() has started. The user should always
call this from main after the Comm object has been constructed.

This page has been automatically generated with DOC-++

DOC++is (©1995 by Roland Wundesling 22
Malte Zockler

10 Attribute

10.6

virtual void finalize ()

Perform shutdown operations at the end of main()

Perform shutdown operations at the end of main(). The user should always call
this if Comm is being used.

10.1

template <class Self> Attribute* species_copy (Self *,
Species * species, int owner)

Species calls this for every Attribute in its list

Species calls this for every Attribute in its list. If the given Attribute has no
local data, it returns itself. Otherwise, it will create an exact copy of itself and
give that to the species.

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling
Malte Zockler

23

11 tag-to_atts

11

(ent_p,att_type) extern Registry <Vector<int>,
S_a(Attribute *)> tag_to_atts

Global registry of Att_tag * to attributes lists

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling
Malte Zockler

24

12 att_map_reader

12

void att_map._reader (char *filename)

a good old C style function!

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling 25
Malte Zockler

13 ENTITY BLK_SZ

13

const size.t ENTITY_BLK_SZ

At the moment we will hardwire the ENTITY_SIZE and ENTITY_MASK here

At the moment we will hardwire the ENTITY SIZE and ENTITY _MASK here.
The proper way is to call the Reference_Nc_Array containing the Entities but
Entity is a lightweight class and can’t afford the reference to the container. So
we will use the mask.

This page has been automatically generated with DOC++ 26

DOC++is (©1995 by Roland Wunderling
Malte Zackler

14 EF

14

#define EF (att_type)

Convenience define allows us the following syntaz to call an Attribute’s
member functions:

Attribute mem_func mem_func_args — — — v v v EF(Topology)->up_ref(local,
u, d)

This page has been automatically generated with DOC++
DOC++ is 1985 by Roland Wunderling 27
Male Zéckler

23 {2

15 Entity

15

class Entity

An Entity can be used to represent an object consisting of a collection of one
or more Attributes

Public Members

151 inline Entity () Default Constructor 31
inline Species*
species () Returns the Species this Entity be-
longs to
15.2 void bind (Species* new species)
Binds an Entily to a species 31
15.3 inline void
bind_local (Local *loc)
Binds an Entity to a known Local
................................ 31
154 inline Attribute*
operator() (Attribute* req_att) const 32
15.5 inline Attribute*
operator() (int attid) const 32
15.6 inline void
remove (Freelist<R_a(Entity), Entity>&, bool,
bool)
Remove an entity 32
15.7 inline void
relocate (Entity *)
Relocate an entity to a new posi-
BOm o 32
15.8 inline void
add_att (Attribute *new _att)
Adds an Attribute to an Entity 33
159 void add_atts (S_a(Attribute*)& new _atts)
Adds a list of Attributes to an En-
by o 33
15.10 inline void
This page has been automatically generated with DOC++
28

DOC++ is ©1995 by Roland Wunderling

Malte Zockler

15 Entity

15.11

15.12

15.13

remove_att (Attribute *old. att)
Removes an Attribute from the
Entityl

void remove_atts (S_a{Attribute*)& old_atts)
Removes a list of Attributes from
the Entily

inline Gid gid (Attribute* att_id)
Returns the type_id Attribute spe-
cific gid for this Entity

inline Gid gid (int att_id) Returns the Attribute specific gid
for this Entity

Gid geid () const Returns the Global Entity ID ...

inline operator Local* () const
User defined conversion opera-
tor from Entity pointer to Local
pointer so Entities and Locals can
be used interchangeably

void pack (Send& buf) const
Pack this entity into a send buffer

static void
backup () Produce a full backup of all Species
data containing Entities

static void
swap_with_backup ()
Swap the current copy of all
Species data with the backup copy

static void
remove_backup ()
Remove the backup copy of all
Species data

inline bool
has_species (Species* species_)
Returns true if the Entity is of the
provided Species

inline bool

33

34

34

34

This page has been automatically generated with DOC+-+
DOC++ is @1995 by Roland Wunderling

Malte Zockler

29

15 Entity

has_species (const S_a(Species*)& species Jist)
Returns true if the Entity’s Species
is one of the Species pointers in
the provided Species list

15.14 inline bool
has_att {(int att_id)
Returns true if the Attribute id
provided is contained in the En-
tity’s Atiribute list 35

15.15 inline bool
has_att (Attribute *att)
Returns true if the Attribute pro-
vided is contained in the Entity’s
Attribute list 35

15.16 inline bool
has_att (const S_a(int)& attid list)
Returns true if any of the At-
tribute ids provided in the At-
tribute list is contained in the En-
tity’s Attribute list 35

15.17 inline bool
has_att (const S_a(Attribute*)& att_list)
Returns true if any of the At-
tributes provided in the Attribute
list is contained in the Entity’s At-

tribute list 36
15.18 inline ~“Entity () Default Destructor 36
Protected Members
Local* local ‘ Pointer to Local which contains

the actual data for this Entity

An Entity can be used to represent an object consisting of a collection of one
or more Attributes. It is a stable placeholder used to reference any data about
the "Entity” it represents. Its data is organized by its Attributes. Entities that
have the same set of Attributes are collectively managed by a Species. The
actual data, associated with an Entity lives in the Species data space. This class
contains a single pointer that can access the data. The address of this pointer
will not change without calling a relocate() member function. Derived types of
this class should overload this function accordingly. By design this class has no
virtual functions. If a derived type requires virtuals then Entity is probably not

This page has been automatically generated with DOC++ 3
DOC++is ©1995by Roland Wunderling 0
Malte Zs.

e kler

15 Entity

the appropriate class to use. A single virtual would incur 100Remember that
an Entity consists of any number of Attributes and these Attributes can have
all the virtuals one wants.

15.1

inline Entity ()

Default Constructor

Default Constructor. Initially points to nothing and must be bound before use.

15.2

void bind (Species* new_species)

Binds an Entity to a species

Binds an Entity to a species. This needs to be called before the Entity can be
used. It may also be called to relocate the Entity to a new Species. The Entity
will get its Local from the Species.

15.3

inline void bind_local (Local *loc)

Binds an Entity to a known Local

Binds an Entity to a known Local. Used by mutator threads.

This page has been automatically generated with DOC++

DOC++ is (©1995by Roland Wunderling 31
Malte Zockler

15 Entity

15.4

inline Attribute* operator() (Attribute® req.att) const

Returns a pointer to the Species specific copy of the requested Attribute’s
typedd. If the Species is not associated with the given Attribute’s type_id
then NULL is returned. When the Attribute’s id or type.id is known it is much
faster to use the operator()(int id) member function.

15.5

inline Attribute* operator() (int att.id) const

Returns a pointer to the Species specific copy of the requested Attribute id. The
id can be a type_id or kind_id. If the Species is not associated with the given
Attribute id then NULL is returned.

15.6

inline void remove (Freelist<R_a(Entity), Entity>&,
bool, bool)

Remove an entity

Remove an entity. If this leads to the removal of other entities then pack their
addresses into the provided array for someone else to remove. Derived types
should overload this member function accordingly.

15.7

inline void relocate (Entity *)

Relocate an entity to a new position

Relocate an entity to a new position. Derived types should overload this member

This page has been automatically generated with DOC++

DOC++ is (1995 by Roland Wunderling 32
Malte Zockler

15 Entity

function accordingly. Specifically, in this class we do not inform the Species or

Local when we moved. If this is required we force the user to Derive from us
and overload this function.

15.8

inline void add_att (Attribute *new_att)

Adds an Attribute to an Entity

Adds an Attribute to an Entity. The Entity will change Species.

15.9

void add_atts (S_a(Attribute*)& new_atts)

Adds a list of Attributes to an Entity

Adds a list of Attributes to an Entity. The Entity will change Species.

15.10

inline void remove._att (Attribute *old_att)

Removes an Attribute from the Entity

Removes an Attribute from the Entity. The Entity will change Species.

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling 33
Malte Zockler

15 ‘ Entity

15.11

void remove_atts (S_a(Attribute*)& old_atts)

Removes a list of Attributes from the Entity

Removes a list of Attributes from the Entity. The Entity will change Species.

15.12

Gid geid () const

Returns the Global Entity ID

Returns the Global Entity ID. The Entity_container geid_sync() member func-
tion has previously setup the geid’s.

15.13

void pack (Send& buf) const

Pack this entity into o send buffer

Pack this entity into a send buffer. That involves packing its geid, the list of
defining attributes and their data.

15.14

inline bool has_att (int att_id)

Returns true if the Attribute id provided is contained in the Entity’s Attribute
list

This page has been automatically generated with DOC+-+

DOC++ is ©1995 by Roland Wunderling
Makte Zockles

34

15 Entity

Returns true if the Attribute id provided is contained in the Entity’s Attribute
list. The Entity Attribute list includes all parents up the Attribute tree. In par-
ticular, passing in the root Attribute id will always return true.

15.15

inline bool has_att (Attribute *att)

Returns true if the Attribute provided is contained in the Entity’s Attribute list

Returns true if the Attribute provided is contained in the Entity’s Attribute
list. The Entity Attribute list includes all parents up the Attribute tree. In
particular, passing in the root Attribute will always return true.

15.16

inline bool has_att (const S_a(int)& attidJist)

Returns true if any of the Attribute ids provided in the Attribute list is
contained in the Entity’s Attribute list

Returns true if any of the Attribute ids provided in the Attribute list is contained
in the Entity’s Attribute list. The Entity’s Attribute list includes all parents
up the Attribute tree. In particular, having the root Attribute id in the list of
Attributes passed to this member function will always result in the return value
being true.

15.17

inline bool has_att (const S_a(Attribute*)& att.list)

Returns true if any of the Attributes provided in the Attribute list is contained
in the Entity’s Atiribute list

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderfing 35
Malte Zockler

15 Entity

Returns true if any of the Attributes provided in the Attribute list is contained
in the Entity’s Attribute list. The Entity’s Attribute list includes all parents
up the Attribute tree. In particular, having the root Attribute in the list of
Attributes passed to this member function will alway result in the return value
being true.

15.18

inline ~“Entity ()

Default Destructor

Default Destructor. This destructor is intentionally not virtual. Derived
types are also meant to have non-virtual member functions and destructors.

This page has been automatically generated with DOC+-+

DOC++ is 1995 by Roland Wunderling 36
Malte Zickler

16 Exists_on

16

class Exists_on

This class keeps track of the processor number that an entity resides on.

This page has been automatically generated with DOC++

DOC++ is (1995 by Roland Wunderfing
Malte Zockler

37

17 Ghost

17

class Ghost

Tag an Entity as being owned by another processor.

This page has been automatically generated with DOC+-+

DOC++ is ©1995 by Roland Wunderling
Malte Zockler

38

18 Factory

18

template <class Type, class ArgType> class Factory

A general class to clone objects of a given type

Public Members

Factory () Default constructor
virtual ~Factory () Default destructor
bool find_arg (const ArgType& arg, Index& pos)

See if an argument exists and its
position if it does

18.1 void update_arg (const ArgType& old_arg,
const ArgTyped new_arg)
Update an the given argument to a
newvalue 39

18.2 Type* clone (ArgType& arg)
Get a pointer to the unique in-
stance of the given type defined by
the given argument type 40

void all_clones (A_a(Type*)& arr)
Fills an array with all the clones
we have manufactured to date

A general class to clone objects of a given type. Makes sure that there is only
one instantiation of the given type for a given argument type.

18.1

void update_arg (const ArgType& old_arg, const
ArgType& new_arg)

Update an the given argument to a new value

Update an the given argument to a new value. Called when the object that
the given argument represents gets updated so that the argument and object
continue to match.

This page has been automatically generated with DOC++

DOC++ is 1996 by Roland Wunderling 39
Malte Zockler

18 Factory

18.2

Type* clone (ArgType& arg)

Get a pointer to the unique instance of the given type defined by the given
argument type

Return Value: s Pointer to the unique instance
Parameters: The — argument that uniquely defines the requested
instance

This page has been automatically generated with DOC+-+

DOC++ is 1995 by Roland Wunderling
Malte Zockles

40

19 Token_obj

19

class Token_obj

This is a temporary comment for the Token_ob class

This page has been automatically generated with DOC++
DOC++ is (©1895 by Roland Wunderling 41
Malte Zockler

20 Filter

20

class Filter

This is a temporary comment for the Filter class

This page has been avtomatically generated with DOC+ 4

DOC++is ©1995 by Roland Wunderling
Malte Zockler

42

21 Initialize

21

class Initialize

Initialization class is a place holder for items we want initialized before main
is called and destroyed after main has ended

Public Members
Initialize () Default initialization
Initialize {const Initialize&)

Default copy constructor.

21.1 Initialize& operator= (const Initialize& rhs)
Equals operator 43

virtual ~Initialize () Default Destructor. Hidden from
everyone.

Initialization class is a place holder for items we want initialized before main
is called and destroyed after main has ended.

Just for diagnostics. We want Memory_pool and Memory._manager to be
first and last things constructed and deleted. This is required for accurate
Memory.??7 diagnotics

So we build a dummy class that hopefully gets contructed first and hence
deleted last. In our destructor we actually call the diagnostic routines of the
memory _manager

21.1

Initialize& operator= (const Initialize& rhs)

Equals operator

Equals operator. Shallow copy written prevent compilier warnings

This page has been automatically generated with DOC-++

DOC++ is (©1995 by Roland Wunderfing 43
Make Zickler

22 Expression_operators

22

class Expression_operators

Ezpression_operators class holds strings that name various operators

Public Members

Expression_operators ()
Default constructor.

22.1 inline void
insert (const Sstring& op_name, int precedence)
Inserts given operator mname in
registry and sets the precedence
level for the operator 45

inline void
remove (const Sstring& op_name)
Removes given operator name
from registry.
inline bool
is_operator (const Sstring& op_name)
Returns boolean true if given op-
erator name is in the list of regis-
tered operalor names

22.2 inline int precedence (const Sstring& op.name)
Returns the precedence level for
given operator name 45
inline void
report () Report out diagnostics about the
Ezxpression_operators

~“Expression_operators ()
Default destructor.

22.1

inline void insert (const Sstring& op.mname, int prece-

dence)

This page has been automatically generated with DOCL 44
DOCH+ is © 1995 by solnnd Wounderling

alte kler

22 Expression_operators

Inserts given operator name in registry and sets the precedence level for the
operator

Inserts given operator name in registry and sets the precedence level for the
operator. The precendence level must be greater than 0.

22.2

inline int precedence (const Sstring& op_name)

Returns the precedence level for given operator name

Returns the precedence level for given operator name. Returns -1 for
the precedence level if operator is not in list of known operator names.

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling 45
Malte Zockler

23 CC operators

23

extern Expression_operators CC_operators

Holds the C++ Ezxpression operators and precedences

This page has been automatically generated with DOC4-+

DOC++ is (©1995 by Roland Wunderling
Malte Zockler

46

24 parenthesis

24

const Sstring parenthesis (7()”)

Const Sstring holding parenthesis characters

This page has been automatically generated with DOC-++

DOC++ is ©1995 by Roland Wunderling 47
Maite Zockler

25 white_space

25

const Sstring white_space (7 \t\n\r\f\v”)

Const Sstring holding white space characters

This page has been automatically generated with DOC++
DOC++ is ©1995 by Roland Wunderling 48

alte Zockler

26 digit

26

const Sstring digit (70123456789”)

Const Sstring holding decimal digits

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling 49
Malte Zckler

27 xdigit

27

const Sstring xdigit (70123456789abcdefABCDEF”)

Const Sstring holding hezidecimal digits

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling 90
Malte Zockler

28 lower_alpha

28

const Sstring lower_alpha (7 abedefghijklmnopqrstu-

vwxyz”)

Const Sstring holding lower case alphabet characters

This page has been automatically generated with DOC++

DOC++ is @1995 by Roland Wunderling o1
Malte Zockler

29 upper-alpha

29

const Sstring upper_alpha (”ABCDEFGHI-
JKLMNOPQRSTU-
VWXYZ”)

Const Sstring holding upper case alphabet characters

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Wunderling
Malte Zockler

52

30 name_char

30
const Sstring mame_char (""" ”abcdefghijklmnopgrstu-
VWXyz”’ " ABCDEFGHI-
JKLMNOPQRSTUVWXYZ”
»0123456789”)

Const Sstring holding all valid characters which can constitute a valid C++
variable name

This page has been automatically generated with DOC++
DOC++ is (©1995 by Roland Wunderling
Maite Zackler

53

31 operator.end

31

const Sstring operator_end (” \t\n\r\f\v” 7 ()

7 0123456789” ”abcde-
fghijklmnopqrstu—

vwxyz’ " ABCDEFGHI-
JKLMNOPQRSTU-

VWXYZ”)

Const Sstring holding set of all characters that can truncate a token of
operator type

This page has been automatically generated with DOC++
DOC++ is (91995 by Roland Wunderling 54
Malte Zockle

32 MAX_TOKENS

32

const int MAX_TOKENS

Mazximum number of Tokens that can exist in a given Sstring

This page bas been automatically generated with DOC++

DOC++ is (© 1995 by Roland Wunderling
Make Zickler

55

33 MAX_TOKEN_LEN

33

const int MAX _TOKEN_LEN

Mazimum number of characters an indifidual token can be

This page has been automatically generated with DOC++

DOC++ is @1995 by Roland Wunderling 56
Malte Zockler

34 Token kind

34

enum Token kind

Enumeration designating the types of tokens a string will be parsed into

This page has been automatically generated with DOC++

DOC++ is @1995 by Roland Wunderling
Malte Zackler

57

35 make_tokens

35

bool make_tokens (Sstring inp, A_a(Sstring)& tokens,
A _a(Token kind)& token_kinds)

The make_tokens global function parses the given String into a array of tokens

The make_tokens global function parses the given String into a array of
tokens. The function also returns an array of token types that correspond to
each token token. There are currently six supported token types.

This page has been automatically generated with DOC++ 58

DOC++ is ©1995 by Roland Wunderling -
Malte Zockler

36 convert.to_sstring

36

Sstring convert_to_sstring (A_a(Sstring)& array)

Concatenates an Array of Sstrings to a single sstring

This page has been automatically gencrated with DOC++

DOC++ is ©1995 by Roland Wunderling 59
Malte Zockler

37 infix_to_postfix

37

bool infix_to_postfix (const A_a(Sstring)& infix, Ex-
pression_operators& exp.-ops,
A _a(Sstring)& postfix)

Converts an array of tokens in infiz order to postfix order using the provided
Ezxpression_operators object to determine operators and precedences

Converts an array of tokens in infix order to postfix order using the provided
Expression_operators object to determine operators and precedences.

The Expression_operator object contains a registry of operator Sstrings and
their associated precedence level.

Any token not recognized by the Expression_operator is_operator() mem-
ber function is assumed to be an operand. The left/right () parenthesis are
recognized.

This page has been automatically generated with DOC+-+

DOC+-+ is (©1995 by Roland Wunderling 60
Make Zockler

38 infix_string.to_postfix

38

bool infix_string_to_postfix (const Sstring& inp, Expres-
sion_operators& exp_ops,
A _a(Sstring)& postfix)

Converts a single infiz Sstring to an array of postfix tokens using the provided
Ezxpression_operators object to determine operators and precedences

Converts a single infix Sstring to an array of postfix tokens using the provided
Expression_operators object to determine operators and precedences.

The Expression_operator object contains a registry of operator Sstrings and
their associated precedence level.

Any token not recognized by the Expression_operator is_operator() mem-
ber function is assumed to be an operand. The left/right () parenthesis are
recognized.

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling
Malte Zockler

61

39 infix string_to_postfix

39

bool infix_string_to_postfix (const Sstring& inp, Expres-
sion_operators& exp._ops,
Sstringds postfix)

Converts a single infix Sstring to e postfiz Sstring using the provided
Expression_operators object to determine operators and precedences

Converts a single infix Sstring to a postfix Sstring using the provided Ex-
pression_operators object to determine operators and precedences.

The Expression_operator object contains a registry of operator Sstrings and
their associated precedence level.

Any token not recognized by the Expression_operator is_operator() mem-
ber function is assumed to be an operand. The left/right () parenthesis are
recognized.

This page has been automatically generated with DOC++
DOC++ is @1985 by Roland Wundesling 62
Make Zickler

40 SPECIES BLK SZ

40

const size.t SPECIES_BLK_SZ

At the moment we will hardwire the SPECIES_SIZE and SPECIES_MASK
here

At the moment we will hardwire the SPECIES _SIZE and SPECIES_MASK here.
The proper way is to call the Reference_Nc_Array of the local.data of a Species
but this leads to a Local-Species circular depandancy. If the Array class or
Species changes their MASK usage the following should be updated. There is
an assert() test in the Species constructor to enforce this.

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling
Maite Zockler

63

41 Local

41

class Local

Local provides storage space for an Attribute’s local data and provides a
pointer back to the Entity who’s data it holds so the Species it belongs to can
find oll of the Entitys it has

Public Members

inline Local () Default constructor.

inline Local (Entity *ent)
Constructs e Local filling in the
provided Entity that owns this Lo-
cal
inline void
entity (Entity * ent)
Sets the Entity that owns this Lo-

cal.
inline Entity*
entity () Returns the entity that owns this
Local. :

inline Species*
species () Returns a pointer to the Species
this Local belongs to

Local& operator= {const Local&)
Equals operator

void relocate (Local *new location)
Relocate the current Local to the
specified new_location

41.2 inline “Local () Default destructor 65

41.2

inline ~“Local ()

Default destructor

This page has been automatically generated with DOC++

DOC4++ is ©1996 by Roland Wunderling 64
Malte Zockler

41 Local

Default destructor. The destructor does nothing and is intentionally non-virtual.

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling 65
Malte Zockler

42 Outer_ limits

42

class Outer_limits

Features common to outer surface/outer layer of a processor. This is convenience
Attribute that can be added to Entities.

This page has been automatically generated with DOC++

DOC++ is @©1995 by Roland Wunderling 66
Malte Zickler

43 _ Att_info

43

class Att_info

The Att_info class is a helper class that holds Atiribute specific infommation
relative to a particular Species

Protected Members

friend class
Species

Attribute* orig

Attribute* ours

Att_info* next

Gid base_gid

size_t att_local_size

size_t offset

size.t next_att_offset
Att_info ()

Allow Species as a friend class for
convenient access to all of the pro-
tected data items

Pointer to either a root clone or
an 0bj_£2? Attribute

Pointer to pur Species specific
copy of an Attribute.

Pointer to the next Att_info for
Attributes an id in common

Holds The Species specific begin-
ning indez of the global id.

Holds the total local byte size of
this attribute

Holds the number of bytes offset
from the beginning of the Local
data that this Atltribute’s data be-
gins at

Offset from beginning of Local data
where the next atiribute begins its
data

Default constructor.

Att_info (Attribute *orig_, Attribute *ours_,
Att_info *next_, Gid base_gid_,
size_t size_, sizet offset_,
size_t next_att_offset_)

Constructs an Att_info with given
data.

Attinfo& operator= (const Att_info& rhs)

43.1 virtual ~Att_info ()

Equals operator

Default destructor

This page has been automatically generated with DOC 4+

DOC++ is ®©1995 by Rotand Wunderling
Make Zockler

67

43 Att_info

43.1

virtual ~Att_info ()

Default destructor

Default destructor. Will delete all Att_info objects pointed to by the next
pointer.

This page has been automatically generated with DOC++

DOC++ is @1995 by Roland Wunderling
Malte Zackler

68

44 Species_info

44

class Species_info

The Species_info class is a helper class to Species that holds Species - Species
memory relocation information

Public Members

Species_info () Default constructor.

Species_info (const A_a(sizet)& our_off,
const A _a(size_t)& their_off,
const A_a(size_t)& seg_sizes.)
Constructs a Species_info object
given our & their offsets and mem-
ory segment sizes

Species_info (const Species_info& rhs)
Default Copy constructor.

Species_info&
operator= (const Species_info& rhs)
Equals operator.

“Species_info () Default Destructor.

Protected Members

A _a (sizet) Array of offsets into our Local
data

A _a (size_t) Array of offsets into the Species
we are copying data our Local data
from

A _a (size.t) Array of memory segment sizes

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling 69
Malte Zockler

45 Species

45

class Species

Class Species manages a collection of Entity Locals (local data for an Entity)
that each have an identical set of Atiributes

Public Members

Species (const S_a(Attribute*)& att_args)
Constructs a Species given a set of
Attributes that define the Species

inline Local*
insert (Entity* entity)
Insert a new Local into the local
deta array and initialize the local
with the Entity which owns it

inline Local*
insert (Entity* entity, Local* oldlocal,
Species* old_species)
Insert a new Local into local data
array from an another Species

45.10 Species_info*
make_species_info (Species* old_species)
Create and fill o new Species info
for moving data from that Species
to this Species 74
45.11 inline Attribute*
operator) (Attribute * req_att) const
Returns the our Species specific
Attribute for the given Atiribute
pointer if one exists 74
45.12 inline Attribute*
operator) (const int req.id) const
Returns the our Species specific
Attribute for the given Atiribute id
if one exists 74
inline size_t
This page has been automaticatly generated with DOC+-+ 70

DOC++ is ©1995 by Roland Wunderling

Malte Zockler

45 Species

45.13

comm_defining_size () const
Returns the local data size of
data that has been tagged as
comm_defining for this Species

inline void
comm. defining kids (A_a(int)& kids)
Fills in an array of the Altribute
id’s that are comm._defining for
this Species

inline size.t
local size () const Returns the local data size for this
Species.

mline S.a (Attribute *) () const '
Returns an array of the original
Attributes used to construct this
Species

inline A_.a (Attribute *) () const
Returns a copy of the Species spe-
cific Array of Attributes

static inline Species*
clone (S.a(Attribute*)& args)
Returns a pointer to a cloned
Species having the given set of At-
tributes

static inline Species*
clone (S_a(int)& args)
Returns a pointer to a cloned
Species having the given set of At-
tributes

static inline void
all_species (A_a(Species *)&arr)
Fils an array of pointers to all
Species currently in existance
void inline
all atts (int id, A_a{Attribute *)& attlist)
Fills a list of all the Attributes of a
gwen id contained in this Species
75
inline Index
entity_count () Returns the total number of Enti-
ties that belong to this species

inline Entity*

This page has been automatically gencrated with DOC++
DOC+4 is (©1995 by Roland Wunderting

Malte Zockler

45 Species
entity (const Index i)
Returns the i’th Entity for this
Species
inline void
remove (Local *old)
Removes an Entity’s local date
inline void
backup () Produces a full backup of all Lo-
cal_data for this Species
inline void
swap_with_backup ()
Swaps the current Species data
with the backup copy
inline void
remove_backup ()
Removes the backup copy of this
Species
45.14 inline void
lock () Locks down the Species so no in-
sertions, removal, or relocations
COT OCCUT o veeineia s © 75
45.15 inline void
un_lock () Unlocks the Species so insertions,
removeals, and relocations can oc-
CUT it e 75
inline bool
comm species () Returns boolean true if this Species
has either a Ghost or an Exists on
Attribute
inline bool
ghost () Returns boolean true if this Species
has a Ghost Attribute
inline bool
exists_on () Returns boolean true if this Species
has o Erists.on Attribute
“inline Gid gid (Local *local, int att.id)
‘ Returns the Gid for the given Lo-
cal’s Attribute id
45.16 inline Gid gid (Local *local, Attribute* att)
This page has been automatically generated with DOC++ 72

DOC++ s @ 1995 by

Roland Wanderling
Malte Zckler

45 Species

Returns the Gid for the given Lo-
cal’s Attribute pointer

inline Species*
add_atts (S_a(Attribute *)& new_atts)
Returns o pointer o the Species
that has the given additional At-
tributes

inline Species*
remove_atts (S_a(Attribute *)& old_atts)
Returns a pointer to the Species
that has the given Altributes re-

moved
void report () Prints out a report for this
Species.
~Species () Default Destructor

Protected Members
inline void
species relocate (size_t newloc, sizet oldloc,
const Species_info& species_info)
Copies data from old location to
new location using the provided
Species_info object
45.8 static void
update_atts_threshold (int att_threshold)
Updates all att_idz_arrs to correct
SIZE i iiee e

459 void assign_base _gid (int id, Gid base_gid_)

Assigns a base_gid for a given At-
tribute idl

76

76

Class Species manages a collection of Entity Locals (local data for an Entity)
that each have an identical set of Attributes. Fach Entity then has the same
amount of data associated with it. Species class also helps Entity - Attribute

relationships that are common to this particular Species.

45.10

Species_info* make_species_info (Species* old_species)

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wundesling
Malte Zackler

73

45 Species

Create and fill a new Species info for moving data from that Species to this
Species

Create and fill a new Species info for moving data from that Species to this
Species. The Local data for each attribute with identical kind ids is copyied
when an Entity moves from one Species to another. If kind ids are different but
type ids are the same then we copy data only if the at_most_one() constraint is
set true for the Attribute under consideration. Of special note is the possibility
of data changing sizes even if the type_id is the same. If this is the case only
the minimum of the two data sizes is copyied (from the beginning data offset).
It is the user’s responsibility to fill in any remaining data and ensure that any
desired data to be copied is resides at the beginning data space.

45.11

inline Attribute* operator) (Attribute * req_att) const

Returns the our Species specific Atiribute for the given Attribute pointer if one
exists

Returns the our Species specific Attribute for the given Attribute pointer if one
exists. Null is returned if non exists.

45.12

inline Attribute* operator) (const int req_id) const

Returns the our Species specific Attribute for the given Atiribute id if one exists

Returns the our Species specific Attribute for the given Attribute id if one exists.
Null is returned if none exists.

This page has been automatically generated with DOC+-+

DOC++ is ©1995 by Roland Wunderling 74
Malte Zéckler

45 Species

45.13

void inline all_atts (int id, A_a(Attribute *)& att list)

Fills a list of all the Attributes of a given id contained in this Species

Fills a list of all the Attributes of a given id contained in this Species. The
Attribute pointers are pointers to Species specific copyies.

45.14

inline void lock ()

Locks down the Species so no insertions, removal, or relocations can occur

Locks down the Species so no insertions, removal, or relocations can occur.
This lock is not checked. The user has agreed to not call insert, remove, or
relocate functions while the lock is in place. Performance issues prevent the
"real” locking down if the Species. Modifing the Species while locked down will,
in general, only be detected in DEBUG mode.

45.15

inline void un_ock ()

Unlocks the Species so insertions, removals, and relocations can occur

Unlocks the Species so insertions, removals, and relocations can occur. The
free list automatic garbage collection is turned on and free list emptied at this
time.

This page has been automatically generated with DOC++

DOC++is (©1995 by Roland Wundesling
Malte Zockler

75

45 Species

45.16

inline Gid gid (Local *local, Attribute* att)

Returns the Gid for the given Local’s Attribute pointer

Returns the Gid for the given Local’s Attribute pointer. The type.d is used to
determine exact Attribute.

45.8

static void update_atts_threshold (int att_threshold)

Updates all att_idz_arrs to correct size

Updates all att_idx_arrs to correct size. This function is called by Attribute when
the number of Attributes has grown beyond some threshold.

45.9

void assign_base_gid (int id, Gid base_gid_)

Assigns o base_gid for a given Attribute id

Assigns a base_gid for a given Attribute id. This base Gid is used to calculate
a Local’s gid for a given attribute. Calling this member function locks down
the Species. The user agrees to not insert, remove or relocate any Local data
because this would invalidate the gid calculations.

»

This page has been automatically generated with DOC++

DOCH+ is (©1995 by Roland Wunderling 76
Malte Zockler

Class Graph

Class Graph

1
Atdataptr | 4
L=
Atvalueptr | e)
4
At data | e e e 7
L
Atvalue | e e e 9
7
> Local.data | e e 15
8
—>1 Computeddata | ..ot 16
6
L) Commondata | ceeiiiii e e 14
]
AttNotifiee | o e 17
10
ABETIDUEE | i e e e 18
This page has been automatically generated with DOC++ 77

DOC++ is ©1995 by Roland Wunderling
Malte Zockler

Class Graph

15

Entity | e

18

Factory | e e

19

Token ob] | i e e e

20

| 21 <2 o AN

21

Initialize | e e e e

22

Expression_operators | ... o i

41

Local] e e ittt e e

43

- N A 1 o Y

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling
Malte Z5ckler

Class Graph

44
Speciesinfo | .. e 69
45
Species | e e 70
This page has been automatically generated with DOC++ 79
DOC++ is @1995 by Roland Wunderling

Makte Zockler

Contents

Contents

1 Boundary conditioncceiviiiinriateenicioninceaanns 3
2 Truncation boundarycoceiiiiiiiiiineenrinianeanenn 4
3 Absorbing_boundary conditioncciiiiiiiiiee., 5
4 Perfect_electrical conductorcciiiiiiiiiiieniiien.. 6
5 7= | 7
6 BEdge ...cviiiiierinrrrersnssiosrenscesuanssssssansnannsnas 8
7 FACE ..ivirrneenrereasesneasssessaansnssssssosasessnsannssss 9
8 L @-T=X03 16 11 5 w0 10
9 Dual ...ttt ittt ittt ittt 11
10 Mesh.H ..iviininiiiirinrrnnseresressosaseescassasssnanns 12
11 Tag_to_atts — The Tag_to_atts class is a decorator class for
Mesh_reader €lassesccoiiiieiiiiiiiiiiniaeanannss 19
12 Mesh_position_type — We don’t want to templatize here but
we want to abstract i aNYWAY <.o iiiiiiiii i 25
13 cartesian_position — Fills ret with a pointer to a valid Vector
position for cartesian Node Attributes 26
14 Node ..iiiiiiiiiiiiirenirresseneesnssessssensossncssanssns 27
15 processor_allocator — This global function disiributes the
given number of processors accross each of the parts 28
16 block_partitioner — The global block_partioner function
takes an (I,J,K) sized block and partitions it the provided
number of BIOckSo e 29
17 Position — The typedef below encapsulates type of ”signed
index” as a position in a virtual array thalt may begin with
a negative offselo.viiiiii it it it it 30
18 S_block — S_block class is a base class just here for possi-
ble future expansion of specialized 1,2,3 D structured mesh
1 £ =Tt 31
19 S_block_3d — The S_block_3d class encapsulates much of the
bookkeeping involved with structured 3-D array calculations 32
19.3 operator()o e 36
19.4 0perator() ..ovuininirie i e 36
19.5 operator()ooiiiiiii e 36
19.6 0perator()ooveiiii e e 37
20 Cfen_block — Cfen_block class takes care of structured posi-
tion bookkeeping for Cell/Face/Edge/Node (CFEN) Entities 38
This page has been automatically generated with DDC+4 1

DOC++ is ©1995 by Roland Wunderling

Malte Zockler

Contents

21

22
23

24
25

26

27
28

29

S_mesh — S_mesh class i3 a specialization of the Mesh class
that handles the construction of a homogeneous Structured

mesh part into the Entity container 44
STD.CELLS H_. — Sidcellscvviiiiiiiiiinenns 46
Std_cells —

The Std_cells is a helper class for various classes Derived
from the Mesh cla88 «..oovuevnrvineiiiiiiiiiiiiienneennss 47
SOLVER H_ — Solvercciiiiimiriiiiriiiieiiinnnaannes 49
Solver —

The Solver class is the base class for all the solvers 30
ToPOlOgY ittt ieiietttataccnetraroscecannas 53
USMESH H_ — Usmeshcvvriieiiiiaiiiiiinieacasnes 56
Us_mesh — Us_mesh class is a specialization of the Mesh

class that handles the construction of a volumetric homoge-
neous Unstructured mesh part into the Entity container ... 57

Tiger — The Tiger Class manages the construction and ap-
plication of Mesh and Solver objects at a high level 63

Class Graphcceiriiriiiiiiiiientictanrcsoarensanssne 66

This page has been automatically generated with DOC++
DOC++ is 1995 by Roland Wunderling 2

Mahe Zockler

1 Boundary_condition

1

class Boundary_condition

Features common to boundary conditions.

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Wunderling
Matte Zckler

2 Truncation_boundary

2

class Truncation_boundary

Names

inline void
truncation_id (int trunc_d)
Fills in a truncation_id for this At-
tribute.

inline int truncation_d () Returns o copy of the Truncation
id for this Attribute.

Features common to the truncation of the problem space.

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling
Malte Zockler

3 Absorbing_boundary_condition

3

class Absorbing_boundary_condition

Features common to the Absorbing boundary conditions. For now this is set as
a Truncation boundary but there are Absorbing boundary conditions that are
not truncation boundaries in the strictest sense of the word.

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling
Malte Zackler

4 Perfect_electrical conductor

4

class Perfect_electrical _conductor

Features common to the perfect electrical conductors.

This page has been automatically generated with DOC+-+

DOC++ is 1995 by Roland Wunderling
Malte Zockler

5 Cell

5

class Cell

Features common to Cells

This page has been automatically generated with DOC+4-

DOC++ is @1995 by Roland Wunderling
Malte Zickler

6 Edge

6

class Edge

Features common to Edges

This page has been automatically generated with DOC ++

DOC++ is (©1995 by Roland Wundetling
Malte Zickler

7 Face

7

class Face

Features common to Faces

This page has been automatically generated with DOC++

DOC++ i (©1995 by Roland Wunderling
Malte Zckles

8 Geometry

8

class Geometry

Tag the non-Topology attributes of a mesh.

This page has been automatically gencrated with DOC++

DOC++ is ©1995 by Roland Wunderling
Malte Zockler

10

9 Dual

9

class Dual

Tag that an element is a member of the dual mesh.

This page has been automatically generated with DOC+4+

DOC++ is ©1995 by Roland Wunderling
Malte Zackler

11

10 Mesh.H

10
Mesh.H
Names
10.1 extern Mesh
obj_Mesh Mesh really should be a abstract
base class 12

This file just defines the Mesh class, which is the highest level abstraction
in the Tiger purview. Above here, it’s all physics (for the time being).

10.1

extern Mesh obj_Mesh

Mesh really should be a abstract base class

Names
void (*order_list) (A_a(int)&)
Function to use to order our list of
neighbors in global_build()

bool initialized_ Boolean flag signaling whether ini-
tialize() member function has been
called

static int num_parts_ Holds the number of Mesh parts

that constitute the entire Mesh

static Entity_container <Mesh_entity>
ec This Entity Container holds all
the Mesh Entities used by this pro-

cessor

static Registry <Sstring, Mesh *>

This page has been automatically generated with DOC+-+

DOC++ is @©1995 by Roland Waunderfing 12
Malte Zockler

10 Mesh.H
mesh_types_reg_ Registry with the key being the De-
rived Class Sstring name and the
Data being a pointer to the corre-
sponding obj_Derived_Mesh_class
static Oct_tree <Mesh_entity, Mesh_position_type, Node, TagType>
oct_ The local Oct_tree for this proces-
sor
static Oct_tree <Mesh_entity, Mesh_position_type, Node, TagType>
g_oct The global Oct_iree for all proces-
sors
static Vector <Mesh_position_type>
lo Contains local minimum eztremes
of the Mesh
static Vector <Mesh_position_type>
hi Contains the local marimum ex-
tremes of the Mesh
static Vector <Mesh_position_type>
glo Contains global minimum ez
tremes of the Mesh
static Vector <Mesh_position_type>
ghi Contains the global mazimum ex-
tremes of the Mesh
static A_a (Mesh *) Contains an array of pointers to

10.1.1 virtual Mesh*
clone (const Sstringé&)

Mesh part projects belonging to
this Mesh

This member function serves a

signature for Derived classes 18
TagType partid (Mesh *) Given a pointer th a Mesh part,
this member function returns that
part’s id number
10.1.2 Mesh () Default Constructor 15
Mesh (const Sstring& meshparts._file)
Constructs a Mesh from the given
file of Mesh parts
10.1.3 virtual void
initialize () Initialize the Mesh part 16
10.1.4 void Initialize_oct () Initializizes the Oct_tree 16
This page has been automatically generated with DOC+-+ 13

DOC++ is (1995 by

Roland Wunderling
Malte Zockler

10 Mesh.H

10.1.5

10.1.6

10.1.7

10.1.8

template <class Derived_Type> inline Mesh*
gen_clone (const Sstringés mesh file,
Derived_Type*)

virtual void
local_build ()

void geid_sync ()

inline bool
geid_synced ()

void global build ()

virtual void
close ()

inline size_t
size ()

inline void

Given Mesh type, reader format,
and mesh filename Sstrings This
member function returns a pointer
an initialized mesh object

Builds the Mesh into the Entity
Container

Syncs the Entities by providing a
unique global Entity identification
number (geid) accross all proces-
SOTS e

Returns boolean answering
the question of whether the
geid_sync() member function has
been called

Converts a series of local Meshes

for each processor into a single
unified Mesh

Closes the reader file

Returns the number of
Mesh_Entities currently in the
Mesh

extend_bounds (const

inline void

Vector<Mesh_position_type>& pos,

Vector<Mesh_position_type>& lo_,

Vector<Mesh_position_type>& hi_)
Given a position, along with lo
and high extremes, this member
function modifies the extremes if
position is outside present bounds

16

17

17

17

This page has been automatically generated with DOC++

DOC++is ©1995 by Roland Wunderling

Malte Zickler

14

10 Mesh.H

extend_bounds (const
Vector<Mesh_position_type>& pos)
Given a position, this member
function modifies the Mesh lo and
hi extremes if position is oulside
present bounds

void limits (Vector<Mesh_position._type>& vlo,
Vector<Mesh_position_type>& vhi)
Fills in the local lo and high ex-
tremes of Mesh

inline Index
index (Mesh_entity *e)
Returns the position index into the
Entity_container

void finalize () This member function calls the
Entity_container to finalize all re-
quired communication

“Mesh () Default Destructor

Mesh really should be a abstract base class. However, some compiliers need
a little help getting everything initialized. Also, it is convenient to have the
obj Mesh for access rather than requiring the user to know the mesh type at
this level. -As compilier mature, if obj Mesh is removed below then remember
to make the empty member functions above pure virtuals.

10.1.2

Mesh ()

Default Constructor

Default Constructor. Sets initialization boolean to false. The user must call
initialize() before using this Mesh object.

This page has been automatically generated with DOC+-+

DOC++is 1995 by Roland Wunderfing 15
Malte Zockler

10 Mesh.H

10.1.3

virtual void initialize ()

Initialize the Mesh part

Initialize the Mesh part. Derived types must overload this member function.
The nodes of the Mesh file part are read in during this initialization phase. Also,
limits of the mesh part are determined. Mesh’s initialize does nothing, derived
types do the work.

10.1.4

void initialize_oct ()

Initializizes the Oct_tree

Initializizes the Oct_tree. TODO: Initialization of the Oct_tree should allow
user-defined parameters to be passed in here. For now minimum bin size, tol-
erance, and hash table size are hard wired to reasonable values in this member
function.

10.1.5

virtual void local_build ()

Builds the Mesh into the Entity Container

Builds the Mesh into the Entity Container. Each derived specialization of this
class must write this function. Mesh’s local_build does nothing, derived types
do the work.

This page has been automatically gencrated with DOC++

DOC++ is (91995 by Roland Wunderling 16
Make Zockler

10 Mesh.H

10.1.6

void geid_sync ()

Syncs the Entities by providing a unique global Entity identification number
(geid) accross all processors

Syncs the Entities by providing a unique global Entity identification number
(geid) accross all processors. In general, geid’s will not be contiguous. After
calling this member function no totally new Entities can be created. New En-
tities created on a given processor must have existed on some other processor
before calling this geid_sync function.

10.1.7

inline bool geid_synced ()

Returns boolean answering the question of whether the geid_sync() member
function has been called

Returns boolean answering the question of whether the geid sync() member
function has been called. If geid_synced{) == true then use of geids valid.

10.1.8

void global_build ()

Converts a series of local Meshes for each processor into a single unified Mesh

Converts a series of local Meshes for each processor into a single unified Mesh.

This page has been automatically generated with DOC++

DOC++ is @1095 by Roland Wunderling 17
Malte Zockler

10 Mesh.H

10.1.1

virtual Mesh* clone (const Sstring&)

This member function serves a signature for Derived classes

This member function serves a signature for Derived classes. Derived class
must overload this function. Mesh’s clone function just returns the this pointer.
Derived classes will do the work of actually cloning a Mesh part object.

This page has been automatically generated with DOC++

DOC++ is © 1995 by Roland Wunderling 18
Malte Zockler

11 Tag to_atts

11

template <class Reader> class Tag_to._atts : public
Reader '

The Tag_to_atis class is a decorator class for Mesh_reader classes

Inheritance
Reader ——\l
11
Tag_to_atts

Public Members
11.5 inline Mesh_entity () Default constructor 22

inline void
up (A_a(Mesh_entity*)& ups)
Fills the given array with the up
pointers for this Entity

inline void
dn (A_a(Mesh_entity*)& dns)
Fills the given array with the dn
pointers for this Entity

inline Mesh_entity**
up_ref () Returns reference to the ups for
this Entity

inline Mesh_entity**
up_ref (Indexé nup)
Fills in the number of ups and re-
turns reference to the ups

inline Mesh_entity**
up_ref (Index& nups, Index& ndns)
Fills in the number of ups and dns
returns and reference to the ups &
dns

inline Mesh_entity**

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling 19
Malte Zockler

1 Tag_to_atts

11.6

11.7

11.8

dn_ref () Returns a reference to the dns for
this Fntity

inline Mesh_entity**
dn_ref (Index& ndn)
Fills in the number of dns and re-
turns reference to the dns

void add_up (Mesh_entity* to_add)
Adds an up to this Entity
void add_dn (Mesh_entity* to_add)

Adds a down te this Entity

inline void
remove (Freelist<R_a(Mesh _entity),
Mesh_entity>& free list, bool uflag,
bool dflag)
Removes an entity 22

void remove_up (Mesh_entity* to_sub,
Free list<R_a(Mesh_entity),
Mesh_entity>& free_list)
Removes the given up from this
Entity

void remove_dn (Mesh_entity* to_sub,
Free list<R_a{Mesh_entity),
Mesh _entity>& free_list)
Removes the given dn from this
Entity
inline void
relocate (Mesh_entity *e)
Relocates an entity to a new posi-
HOM o 23
inline void
replace_up (Mesh_entity* old_address,
Mesh_entity* new._address)
Replaces up with old address with
the up’s new address
inline void
replace_dn (Mesh_entity* old_address,
Mesh_entity* new_address)
Replaces dn with old address with
the dn’s new address

void report () Prints a report for this entity ... 23

This page has been automatically generated with DOC++ 20
DOC++ is ©1995 by Roland Wunderfing

Malte Zockler

11

Tag_to.atts

119 void

inline

inline

inline

inline

inline

11.10 inline

inline

11.11 inline

11.12 inline

report (int level) Report of entity’s ups and dns re-
cursively from level on down

operator Sstring () const
Letting Sstring know that we don’t
want anything to do with it

bool
has_up (Mesh_entity *entity)
Returns boolean true if any of this
Entity’s ups is identical to the pro-
vided Entity

bool
has_up (const S_a(Mesh_entity*)& entity list)
Returns boolean true if the Entity
has an up identical to any of the
Entities in the provided list of En-
tilzes
bool
has_dn (Mesh_entity *entity)
Returns boolean true if any of this
Entity’s dns is identical to the pro-
vided Entity

bool
has_dn (const S_a(Mesh_entity*)& entity list)
Returns boolean true if the Entity
has an dn identical to any of the
Entities in the provided list of En-
tities
“Mesh_entity () Default Constructor
void
next_node (Gid& id, Vector<double>& pos)
Reads the next node record return-
ing the node id and node position

void
next_cell (Gid& id, S_a(Attribute *)& ‘atts,
A _a(Gid)& nodes)
Reads the next cell record and uses
tagging to obtain a set of attributes
that will accompany the cell

void

23

24

24

This page has been automatically generated with DOC-++

DOC++ is ©1995 by

Roland Wunderfing
Make Zockler

21

11 Tag_to_atts

next_special (Gid& id, S._a(Attribute *)& atts,
A _a(Gid)& nodes)
Reads the next special record and
uses tagging to obtain a set of at-
tributes that will accompany the
special ... 24

The Tag.to.atts class is a decorator class for Mesh reader classes. Tag.to_atts
abstracts the tagging of nodes, cells, and specials by converting from a Mesh_tag
to a set of Attributes.

11.5

inline Mesh_entity ()

Default constructor

Default constructor. Intentionally does nothing

11.6

inline void remove (Freelist<R_a(Mesh_entity),
Mesh _entity>& freelist, bool uflag,
bool dflag)

Removes an entity

Removes an entity. Passes a freelist along so everyone called can add to list all
other Entities that should now be removed as a result of this Entity’s removal.

Thix page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling
Malte Zockler

22

11 Tag_to_atts

11.7

inline void relocate (Mesh_entity *e)

Relocates an entity to a new position

Relocates an entity to a new position. The ups and dns for this entity are called
and the up&dn references pointing back to this Entity are updated with new
location.

11.8

void report ()

Prints a report for this entity

Prints a report for this entity. Up, dn, and Species information are reported.

11.9

void report (int level)

Report of entity’s ups and dns recursively from level on doun

Report of entity’s ups and dns recursively from level on down. No Species
specific information is provided.

11.10

inline ~Mesh_entity ()

Defoult Constructor

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderfing 23
Malte Zockler

11 Tag_to_atts

Default Constructor. This destructor is intentionally not virtual. Derived
types are also meant to have non-virtnal member functions and destructors.

11.11

inline void next_cell (Gid& id, S_a(Attribute *)& atts,
A _a(Gid)& nodes)

Reads the next cell record and uses tagging to obtain a set of attributes that
will accompany the cell

Reads the next cell record and uses tagging to obtain a set of attributes that
will accompany the cell. Cells are defined by their nodes.

11.12

inline void next_special (Gid& id, S_a(Attribute *)&
atts, A_a(Gid)& nodes)

Reads the next special record and uses tagging to obtain a set of atiributes that
will accompany the special

Reads the next special record and uses tagging to obtain a set of at-
tributes that will accompany the special. Specials are defined by their nodes.

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wundetling 24
Malte Zackler

12 Mesh_position_type

12

typedef double Mesh_position_type

We don’t want to templatize here but we want to abstract it anyway

We don’t want to templatize here but we want to abstract it anyway. Perhaps
this belongs in Utilities.H

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling
Malte Zockler

25

13 cartesian_position

13

inline void cartesian_position (Entity *ent, Attribute

*att, void *ret)

Fills ret with a pointer to a valid Vector position for cartesian Node Attributes

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wundesling 26
Malte Zockier

14 Node

14

class Node

Names
void pos (Mesh_entity *e,
Vector<Mesh _position_type>& v)
Fills in a position Vector for a
given Mesh_entity

Vector <Mesh_position_type>
pos {Mesh_entity *e) const
Returns a copy of the position for
given entily.

const Vector <Mesh_position_type> &
pos._ref (Mesh_entity *e) const
Returns a reference to position
data for a given entity.

void pos (Mesh_entity *e,
const Vector<Mesh_position_type>& v)
Fills a const reference to position
data

void pos (Mesh_entity *e,
Vector<Mesh_position_type>*& v)
Fills a pointer to position data

void tag (const TagType& t)
Sets the tag for this Atiribute

TagType tag () Returns a copy of the tag for this
attribute

void mesh_part_file (const Sstringé mesh_file)
Sets the mesh_part_file for this At-
tribute.

Sstring mesh_part _file () Returns a copy of the mesh part
filename for this attribute

void Node::cartesian_pos (Mesh_entity *, Vec-
tor<Mesh_position_type>*)
Required for calling index function
of obj_Mesh

Features common to Nodes

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling 27
Mahe Zockler

15 processor.-allocator

15

void processor_allocator (int num_procs, const
A_a(double)& weighted_totals,
A_a(A_a(int))& part_to_proc,
A_a(A_a(int))& proc_to_part)

This global function distributes the given number of processors accross each of
the parts

This global function distributes the given number of processors accross each of
the parts. The implementation is ”reasonable” but not optimal.

This page has been automatically generated with DOC++
DOC++ is ©1995 by Roland Wunderling
Malte Zockler

28

16 block _partitioner

16

void block_partitioner (int num blocks, const Vec-

tor<Ubint>& orig_block, const
Vector<Ubint>& orig_offsets,

A _a(Vector<Ubint>)&
block starts,
A_a(Vector<Ubint>)&

block _sizes)

The global block_partioner function tekes an (I,J,K) sized block and partitions
it the provided number of blocks

The global block_partioner function takes an (I,J,K) sized block and partitions
it the provided number of blocks. The implemention is simple and can certainly
be improved upon. TODO: write an optimization procedure that better load
balances taking into account minimizing surface area and load balancing. The
algorithm below emphasizes the minimization of surface area rather than trying
to achieve perfect load balancing. This, in general, seems to be a good thing to
do. In practice the load imbalance is +/- < 2 percent for the algorithm below.
Even a slight increase in surface areas would seem to make things worse. But
as always this needs to be verified.

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Waunderling 29
Malte Zckler

17 Position

17

typedef Sbint Position

The typedef below encapsulates type of ”signed indez” as a position in ¢ virtual
array that may begin with a negative offset

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling 30
Malte Zickler

18 S_block

18

class S_block

S_block class is a base class just here for possible future expansion of
specialized 1,2,3 D structured mesh types

Inheritance

18
S_block

I_) 19
S _block 3d

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Wunderling
Make Zockler

31

19 S_block_3d

19

class S_block_3d : public S_block

The S_block_3d class encapsulates much of the bookkeeping involved with
structured 3-D array calculations

Inheritance
18

S_block —-]

19
S_block_3d

Public Members
19.2 S_block..3d () Default constructor 36

S_block_3d (Position off, Index i, Index j, Index k,
Index bi, Index bj, Index bk, bool os)
Constructs a block given beginning
offset the number of cells in each
direction, the boundary flags for
each direction, and a bool flag
specifing whether or not the outer
surface is to be included in (i, §, k)
position celculations

S_block_3d (Position off, Vector<Index>& n,
Vector<Index>& bn, bool os)
Constructs a block given beginning
offset, vector for cell counts, vec-
tor for the boundary flags, and a
bool flag specifing whether or not
the outer surface is to be included
in (%, §, k) position celculations

void initialize (Position off, Vector<Index>& n,
Vector<Index>& bn, bool os)
Converts vector (i, j, k) cell count
& bool flags to index based calls

void initialize (Position off, Index i, Index j, Index k,
Index bi, Index bj, Index bk, bool os)

This page has been automatically generated with DOC++

DOC++ is @1995 by Roland Wunderling
Malte Zockler

32

19

S_block_3d

Sets up a 3D block of elements for
position and interior/exterior/ ex-
cluded queries

19.3 inline bool operator() (Index i, Index j, Index k,
Position& n)

................................ 36
void assert_bounds (Index i, Index j, Index k)
Asserts (i, j, k) bounds are <=
mazimum velid indices
inline bool
excluded (Index i, Index j, Index k)
~ Bool test whether world coordinate
(i, 3, k) is to be excluded and so
no number allocated in the virtual
position array
inline bool
interior (Index i, Index j, Index k)
Bool test whether world coordinate
(i, J, k) is in the interior of this
block
inline Position&
offset () Returns the beginning offset Posi-
tion number for this block of num-
bers
inline Index
size () Return the total number of ele-
ments in this block taking into ac-
count outer surface and boundary
flags
inline Position
past_end () Return the next available Position
number after the end of this block
inline void
cells (Index& i, Index& j, Index& k)
Returns the number of cells in (i,
J, k) for this block
inline void
cells (Vector<Index>& v)
Returns the number of cells in vec-
tor v for this block
19.4 inline void operator() (Position n, Vector<Index>& v)........ 36
This page has been automatically generated with DOC++
DOCH+ is © 1995 by 33

Roland Wundesling
Malte Zockler

19 S_block.3d

19.5 inline Position
operator() (Index i, Index j, Indexk)............. 36

19.6 inline bool operator() {const Vector<Index>& v, Position& n) 37

inline bool
excluded (const Vector<Index>& v)
Returns true of Vector (i, j, k) is
excluded from the 3-D world coor-
dinate space

inline bool
interior (const Vector<Index>& v)
Returns true of Vector (i, j, k) is
an interior entry in the 3-D world
coordinate space

inline bool
interior (Position n)
Returns true of 1-D world coodi-
nate index n is en interior eniry
in the 3-D world coordinate space

inline bool
exterior (const Vector<Index>& v)
Returns true of Vector (i, j, k) s
an exterior entry in the 3-D world
coordinate space

inline bool
exterior (Index i, Index j, Index k)
Returns true of Vector (i, j, k) is
an exterior entry in the 3-D world
coordinate space

Protected Members

friend class

Cfen_block Allow Cfen_block to be a friend
class

inlire Position
ton (Index i, Index j, Index k)
Maps (i, §, k) to ¢ single number n
(3, 3, k) can not be excluded based
on flags set for this block

19.1 inline Vector <Index>

This page has been automatically generated with DOC++

DOC++is (©1995 by Roland Wunderling 34
Malte Zockler

19 S_block_3d

to_v (Position n) Maps number n to (i, j, k) vector
37

The S_block_3d class encapsulates much of the bookkeeping involved with
structured 3-D array calculations. This class is a helper class to Cfen_block.

Manages numbers meant to be position numbers in a virtual block of Entities.
Numbers can be:

Interior: Having (i,j,k) neighbors that are managed by this block (truely
structured)

Exterior: On outer surface. These are required for structured indexing but
they themselves do not have all their nearest neighbors being (interor/exterior).

Excluded: If the outer surface flag is not set then the outer surface is excluded
from numbers managed by this block.

If the outer surface flag is not set then the usual exterior numbers become
excluded and the outer surface interior numbers become exterior.

Given a block of structured cells in 3-D space. The number of nodes, edges,
faces, cells are all different. This usually leads to different counting formulas
for each. Questions of whether a given node/edge/face/cell number is on the
interior or exterior of a block also leads to different formulas for each situation.
Things usually become tedious when finding stencils near boundarys etc... The
indexing formulas are also dependent on whether or not the outer surface is to
be included or not.

It is the intent of this class to provide an interface that handles mapping 3-D
local coordinate (i,j,k) space to a world 1-D coordinate space and visa versa.
Through the use of boundary and outer surface flags this class unifies the 1D-3D
mapping formulas for nodes/edges/faces/cells indexing calculations.

Input:
offset
cells in x, y, 2

boundary flags for x,y z directions of type Index (mot bool):
0 means excluded 1 means included

bool outer_surface flag: true means include cuter_surface

This page has been automatically generated with DOC+-+

DOC++ is @1995 by Roland Wunderling 35
Malte Zsckles

19 S-block.3d

19.2

S_block_3d ()

Default constructor

Default constructor. The initialize member function must be called before using
this object when this destructor is used.

19.3

inline bool operator() (Index i, Index j, Index k, Position&

n)

Operator(i,j,k, &n) gives the position number n in virtual block of numbers
given 3-D world coordinate (i,j,k) if interior operator() returns true else false.

19.4

inline void operator() (Position n, Vector<Index>& v)

Operator (Position n, Vector v) gives the world (i,j,k) coordinate number given
1-D coordinate n/

19.5

inline Position operator() (Index i, Index j, Index k)

Operator(i,j,k) returns 1-D world cordinate given the (i,j,k) world coordinate.

This page has been automatically generated with DOC+-+

DOC++ is (©1995 by Roland Wunderling 36
Makte Zockler

19 S_block_3d

19.6

inline bool operator() (const Vector<Index>& v, Posi-

tion& n)

Operator(Vector(i,j,k)& &n) gives the 1-D world coordinate number n given
the 3-D world (i,j,k) coordinate number. Returns true if interior else false.

191

inline Vector <Index> to_v (Position n)

Maps number n to (i,j,k) vector

Maps number n to (i,j,k) vector. n must not be an excluded number.

This page has been sutomatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling 37
Malte Zickler

20 Cfen_block

20

class Cfen_block

Cfen_block class takes care of structured position bookkeeping for
Cell/Face/Edge/Node (CFEN) Entities

Public Members

20.3 ’ Cfen_block (R.a(Mesh_entity)& arr)
Constructs a Cfen_block given Ref-
erence_Nc_ Array 39

Cfen_block class takes care of structured position bookkeeping for
Cell/Face/Edge/Node (CFEN) Entities.

Given a reference to an Reference_ NC_array of Mesh_entities, and the num-
ber of cells in a (i, j, k) block, this class manages the Index positions for CFEN
Entities.

The outer surface of a structured block can be included or excluded.

The Cfen_block managers numbers for 8 different Entity types of a structured
block In the arrays and enumerations the following is set up

Array position: enumeration: Representation of:
0 no Nodes of the block
1 ex X directed edges
2 ey Y directed edges
3 ez Z directed edges
4 hx X directed faces
5 hy Y directed faces
6 hz Z directed faces
7 ce Cells of the block

**. The 2 letter enumerations are used for compact array
initializations where it is important to notice the
intialization patterns. The two letters
{no, ex, ey, ez, hx, hy, hz, ce} are used for
historical reasons. Their usage is very popular in
the FDTD community.

Historical note:

This page has been automatically generated with DOC+—+

DOC++ is (©1995 by Roland Wunderling 38
Malte Zockler

20 Cfen_block

There are a fair number of extra member functions provided for the user.
These member functions are provided for user convenience. Most of the answers
could be obtained by doing simple one line adding and subtracting.

However, there could be many many more. For example, the ups()/dns()
member functions could be split into dozens and dozens of combinations.

Historically the logic contained here and in S_block_3d has been distributed
all over huge portions of various application codes. Applications often had many
thousands lines of code devoted to such logic because of the hundreds of special
case formulas usually required by these applications.

These ”special case” formulas and situations are delibrately missing. The
formulas have now been unified into a small set of member functions which use
a series of lookup tables.

20.3

[

Cfen_block (R_a(Mesh _entity)& arr)

Constructs a Cfen_block given Reference_Nc_Array

Constructs a Cfen_block given Reference_Nc_Array. The user mush call initialize
if this constructor is used.

20.4

inline Position ent_type (Position n)

Returns a number [0-7] given a position number

Returns a number [0-7] given a position number. Number returned: Element
type: 0 node 1 X directed edge 2 Y directed edge 3 Z directed edge 4 X directed
face 5 Y directed face 6 Z directed face 7 cell

This page has been automatically generated with DOC++

DOC++ s ©1995 by Roland Wunderling 39
Malte Zsckler

20 Cfen_block

20.5

inline bool node_excluded (Position n)

Returns boolean true if Position is an ezcluded node

Returns boolean true if Position is an excluded node. Note that position
n is based on numbering range 0 to of nodes in block) and not the
numbering scheme used for the rest of Cfen block.

20.6

inline void nodes_of cell (Position n, A_a(Index)&

nodes)

Fills in the Array with 8 node positions of given cell number

Fills in the Array with 8 node positions of given cell number. Note that the
node position numbers are based on included ”excluded” nodes. This is NOT
the numbering scheme usually used by Cfen_block. Only node_excluded() and
nodes_of_cell() use this convention.

20.7

inline void up_dns (Position n, A_a(Index)& up_dn, const

bool up)

Fills the ups or dns array with the positions of the nearest neighbors that are
one higher or lower in dimensionality

Fills the ups or dns array with the positions of the nearest neighbors that are
one higher or lower in dimensionality. This routine assumes position is in the
interior so that structured position offsets are valid The boolean flag is true if
ups is desired else dns

This page has been automatically general ted with DOC++

DOC++is (©1995 by Roland Wunderling
Malte Zockler

40

20 Cfen_block

20.8

inline void ups (Position n, A_a(Index)& ups)

Fills the ups array with the positions of the nearest neighbors that are one
higher in dimensionalily

Fills the ups array with the positions of the nearest neighbors that are one
higher in dimensionality. This routine assumes position is in the interior so that
structured position offsets are valid

20.9

inline void dns (Position n, A_a(Index)& dns)

Fills the dns array with the positions of the nearest nearest neighbors that are
one lower in dimensionality

Fills the dns array with the positions of the nearest nearest neighbors that are
one lower in dimensionality. This routine assumes position is in the interior so
that structured position offsets are valid

20.10

inline void up.dns (Position n, A_a(Mesh_entity*)&
up_dn, const bool up)

Fills the ups or dns array with the positions of the nearest neighbors that are
one higher or lower in dimensionality

Fills the ups or dns array with the positions of the nearest neighbors that are
one higher or lower in dimensionality. This routine assumes position is in the
interior so that structured position offsets are valid. The boolean flag is true if
ups is desired else dns. The Reference Nc_array MUST be sized to contain the
Cfen block before calling this member function.

This page has been automatically generated with DOC++

DOC++ i3 (©1995 by Roland Wunderling 41
Matte Zockler

20 Cfen_block

20.11

inline void ups (Position n, A_a(Mesh_entity*)& ups)

Fills the ups array with the Mesh_entity pointers for the nearest neighbors that
are one higher in dimensionality

Fills the ups array with the Mesh_entity pointers for the nearest neighbors that
are one higher in dimensionality . The Reference Nc_array MUST be sized to
contain the Cfen block before calling this member function.

20.12

inline void dns (Position n, A_a(Mesh_entity*)& dns)

Fills the dns array with the Mesh_entity pointers for the nearest neighbors that
are one lower in dimensionality

Fills the dns array with the Mesh_entity pointers for the nearest neighbors that
are one lower in dimensionality . The Reference_Nc_array MUST be sized to
contain the Cfen block before calling this member function.

20.13

inline void up_dn_address_offsets (Position n,
A _a(SIndex)& up_dn,

const bool up)

Fills the ups or dns array with the address offsets of the nearest neighbors that
are one higher or lower in dimensionality

Fills the ups or dns array with the address offsets of the nearest neighbors that
are one higher or lower in dimensionality. This routine assumes position is in
the interior so that structured position offsets are valid. The boolean flag is true
if ups is desired else dns. The Reference Nc_array MUST be sized to contain
the Cfen block before calling this member function.

This page has been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling
Malte Zocklec

42

20 Cfen_block

20.14

inline void ups_address_offsets (Position n,

A_a(SIndex)& ups)

Fills the ups array with the address offsets of the nearest neighbofs that are
one higher in dimensionality

Fills the ups array with the address offsets of the nearest neighbors that are one
higher in dimensionality . The Reference_ Nc_array MUST be sized to contain
the Cfen block before calling this member function.

20.15

inline void dns_address_offsets (Position n,

A _a(SIndex)& dns)

Fills the dns array with the address offsets of the nearest neighbors that are
omne higher in dimensionality

Fills the dns array with the address offsets of the nearest neighbors that are one
higher in dimensionality . The Reference_ Nc_array MUST be sized to contain
the Cfen block before calling this member function.

This page has been automatically generated with DOC-++

DOC++is (©1995 by Roland Wunderling
Make Zickles

43

21 S_mesh

21

template <class Smesh_reader> class S_mesh : public
Us_mesh<Smesh_reader>

S_mesh class is a specialization of the Mesh class that handles the construction
of a homogeneous Structured mesh part into the Entity container

Inheritance
Mesh
28
Us.mesh
21
S_mesh
Public Members
21.1 S_mesh () Default constructor 45
Smesh_reader*
reader () Returns a pointer to the reader be-

ing used for this mesh part

virtual Mesh*
clone (const Sstring& mesh file)
Returns a pointer to an Structured
Mesh part object
21.2 virtual void
initialize {) Initializes the Structured Mesh
part ... e 45

21.3 virtual void
local _build () Builds the Mesh part on this
processor not communicating the

outer surface to other processors 45
void close () Closes the files associated with this
mesh part
virtual ~S_mesh () Default destructor

This page has been automatically generated with DOC-++

DOC++ is (1995 by Roland Wundecling 44
Maite Zockler

21 S_mesh

S_mesh class is a specialization of the Mesh class that handles the construc-
tion of a homogeneous Structured mesh part into the Entity container. The
structured mesh can be cartesian or warped. A warped structured mesh has
local node positions that are stored with the Node Entities. The outer surface
of all Structured mesh parts are actually Unstructured. This allows structured
meshes to be stitched into a single unified mesh.

21.1

S_mesh ()

Default constructor

Default constructor. Registers its name in the Mesh types static registry held
by Mesh.

21.2

virtual void initialize ()

Initializes the Structured Mesh part

Initializes the Structured Mesh part. The nodes of the unstructured outer sur-
faces of this mesh file part are determined and limits of this mesh part are
established during this initialization phase.

21.3

virtual void local_build ()

Builds the Mesh part on this processor not communicating the outer surface to
other processors

Builds the Mesh part on this processor not communicating the outer surface to
other processors. Both the structured and unstructured parts of this mesh part
are constructed at this time.

This page has been automatically generated with DOC+-+

DOC++ is ©1995 by Roland Wunderling 45
Malte Zockler

22 STD_CELLS_H.

22

#define STD_CELLS_H_

Std_cells

Std_cells.H
Definition of the Std_cells class.

This page has been automatically generated with DOC++

DOC++ is @109 by Roland Wunderfing 46
Malte Zockler

23 Std_cells

23

class Std_cells

The Std_cells is a helper class for various clesses Derived from the Mesh class

Public Members

23.1 Std_cells (int cell type = 0))
Default constructor 48

Std _cells (const A_a(Gid)& nodes)
Constructs a Std_cell object given
array of node numbers
inline void
set_cell_type (const A_a(Gid)& n)
Determines the cell type based on

the number of non-zero nodes are
set in the array

inline int cell_type () Returns the cell type

inline int n_nodes () Returns the number of nodes for a
given cell type

inline int n_faces () Returns the number of faces for a
given cell tyoe

inline int n_edges () Returns the number of edges for a
given cell type

inline Gid n_num (int f, int e)
Returns the local cell node number
given a local face number and edge
number for given face

inline Gid e_num (int f, int e)
Returns the local cell edge number
given a local face number and edge
number for given face

inline int e_count (int f) Returns the number edges for o
given face number

The Std_cells is a helper class for various classes Derived from the Mesh class.
Essentially, this class manages local (within a cell} numbering conventions.

This page has been automatically generated with DOC-++

DOC++ is ©1995 by Roland Wunderfing 47
Matte Zckler

23 Std_cells

The Std_cells file is temporarily ”hard_wired” for hexahedral, tetrahedral,
pyramid, and prism in the .C file.

(This is a minor issue. Other then input, the rest of the code should support
other cell types.)

We just need to get the "element.types” like functionality in here so the user
can specify any element types they want to from a file rather than editing source
code. Converting tables to file input is very simple and was done in some earlier
versions of TIGER. It is however on the TODO list.

TODO: move tables of Std_cells to input file.

Some of the tables can be computed from the others at reading time. (They
are formulas based on previos input).

Also, high order shape elements for the moment are unsupported 2 things
are needed:

1)Input readers which handle high-order formats for Mesh

and Attributes
2)Associated length, area, area_normal etc... functions

If the topology doesn’t change compared to lower

elements (which seems to be the case for most physics)

then the above mentioned items should be all that is needed
to support high order meshes. The rest of Tiger abstracts
this complexity to the above 2 places.

23.1

Std_cells (int cell_type = 0)

Default constructor

Default constructor. Optional argument sets cell type for subsequent queries.

This page has been automatically generated with DOC-++

DOC++ is ©1995 by Roland Wanderling 48
Matte Zckler

24 SOLVER H.

24

#define SOLVER _H_

Solver
Solver.H
Definition of the Solver class.
This page has been automatically generated with DOC++ 49

DOC++ is 1995 by Roland Wunderling
Malte Zockler

25 Solver

25

class Solver

The Solver class is the base class for all the solvers

Public Members

Selver () Default Constructor sets initial-
ization boolean to false.

Solver (const Sstring& meshparts file)
Constructs a Solver from the given
file of Mesh parts

virtual void
initialize () Initialize the Solver

~Solver () Default Destructor.

Protected Members

bool initialized._ Boolean flag signaling whether ini-
tialize() member funcition has been
called

static A _a (Solver *) Holds an Array of pointers to

other Solver objects that are man-
gaged by this Solver object

The Solver class is the base class for all the solvers. The solver requires a
pointer to a fully constructed Mesh object or a Solver input filename.

The role of this class is to manage the Solving process. Although actual
solvers can be added to Derived class member functions, the intended usage
most often will be to orgistrate the calling of other Solver packages such as
Petsc.

General comment: At present, this layer of the Tiger
software is minimalistic. For now we
are only creating a one or test cases
to demostrate:

1) Typical usage of Mesh/E_A/Utility
Libraries

This page has been automatically gencrated with DOCH+

DOC++ is (1995 by Roland YWunderling 30
Malte Zockler

25 Solver

2) Proof of Concept to see how much
bookkeeping and low level details
can be kept hidden from this level

Derived classes should implement the following:

Constructor: (Given Meshx)
During the construction phase the Solver may adorn
the Entities contained in a Mesh with Solver specific
Attributes.

Constructor: (Given solver_input_file)
Reads in an existing Solver input file

Initialize(): The Solver sets up Matricies required by the
solve() routine.

read_input_file(): Reads in an existing Solver input file

write_input_file(): Writes all required information out to
disk.

solve(): Invokes solver. This function is intended to be
overloaded with various parameter arguments such as
compute one time step or solve entire problem etc.
The signatures well vary on the type of Solver or
the solver package actually called.

Things to think about:

A given solver object should be able contain other solver objects.
For example:
A Finite_volume_solver may invoke:
Absorbing_boundary_condition
Near_to_far_zone
Dsi_free_space
Dsi_lossy_material
Dsi_source
Dsi_sensor

each solver may want to use a common mesh
Some solvers may want to use their own mesh

This page has been automatically generated with DOC .+

DOC++ is ©1995 by Roland Wunderling
Malte Zsckler

31

25 Solver

We may also want the output from one Solver to be the input
to another Solver.
For example:
A Near_to_far_zone solver in general may want
to use the fields a Finte_volume_solver.

Another common situation would be for a given solver to
call other member functions of the same solver object to
split the overall solving process into piecies.

This is where a high level framework could add power and
convenience.

This page has been automatically generated with DOC -+

DOC++ is (©1995 by Roland Wunderling 52
Malte Zockler

26 - Topology

26

class Topology

Names

26.1

AT _DEC_BEGIN (Topology, Attribute)
Topology handles the up/dn in di-
mensionality topology abstraction

54
void up (Local* loc, A_a(Mesh_entity*)& arr)
Fill in the array with the ups for
the given entity

void dn (Local *loc, A_a(Mesh_entity*)& arr)
Fill in the array with the downs for
the given entity

Mesh_entity**
up_ref (Local *loc)
return reference to the ups for
gqiven entity

Mesh_entity**
up_ref (Local *loc, Index& s)
return num ups and reference to
the ups

Mesh_entity**
up_ref (Local *loc, Index& u, Indexé d)
return num ups, dns and refer-
ence to the ups

Mesh_entity**
dn_ref (Local *loc)
return reference to the dns for
given entity
Mesh_entity**
dn_ref (Local *loc, Index& s)
return num dns and reference to
the dns
const Index&

num_ups () const Get the number of ups these enti-
ties have.

const Index&

This page has been automatically generated with DOC++
DOC4-+ is ©1995 by Roland Wunderling

Malte Zickler

26 Topology

num _dns () const Get the number of downs these en-
tities have.

26.2 if(num_dns() > 0)(new loc)()
(new_loc) () Used to fix the dns starting in the
last up space after a local relocate
to @ Species with more ups has oc-
CUred ... 99

void change_up (Local * loc, Mesh_entity *to_add,
const Index pos)
Change the up al the given posi-
tion to the given value.

void change_dn (Local * loc, Mesh_entity * to_add,
const Index pos)
Change the down at the given po-
sition to the given value.

Tag the Topological properties of a mesh.

26.1

AT_DEC_BEGIN (Topology, Attribute)

Topology handles the up/dn in dimensionality topology abstraction

Topology handles the up/dn in dimensionality topology abstraction. A com-
plexity of this abstraction is the possibility of the Entity being either structured
or unstructured. If unstructured then the up/dn information is stored in lo-
cal data. If up/dn information is structured then we only have stored the
offsets relative to the given entity. In the structured case we add the offsets
to the the given entity pounding the information into either a user provided
A _a(Mesh_entity *) or our local storage space.

For methods that rely heavily on mesh topological connectivity, the Topology
member functions have a huge influence on the overall application performance.

This page has been automatically generated with DOC++

DOC++ is ©1995 by Roland Wunderling o4
Malte Zockler

26 Topology

26.2

if(num_duns() > 0)(newloc)() (newdoc) ()

Used to fix the dns starting in the last up space after a local relocate to a
Species with more ups has occured

Used to fix the dns starting in the last up space after a local relocate to a Species
with more ups has occured. This is not thread safe. The calling function should
lock down the Entity.

This page has been automatically generated with DOC++

DOC++ is 1995 by Roland Wunderling 95
Malte Zockler

27 US.MESH_H_

27

#define US_ MESH H_

Us_mesh

Us_mesh.H
Defines the Us_mesh (Unstructured Mesh) class

This page has been automatically generated with DOC++

DOC++is ©1995 by Roland Wunderling 56
Malte Zockler

28 Us_mesh

28

template <class Usmesh_reader> class Us_mesh : public
Mes

Us_mesh class is a specialization of the Mesh class that handles the
construction of a volumetric homogeneous Unstructured mesh part into the
Entity container

Inheritance

Mesh ——\L

28
Us_mesh

L 21
S_mesh

Public Members
28.4 Us_mesh () Default constructor 60

inline Usmesh._reader*
reader () Returns a pointer to the reader be-
ing used for this mesh purt

void open (const Sstring& file.name, const Sstring mess)
Opens the files associated with the
the provided filename and initial-
izes the reader

virtual Mesh*
clone (const Sstring& mesh file)
Returns a pointer to an Unstruc-
tured Mesh part object
28.5 virtual void
initialize () Initializes the Unstructured Mesh
Part ... 61

virtual void

This page has been automatically generated with DOC+-+

DOC++ is 1995 by Roland Wunderling o7
Malte Zockler

28 Us_mesh

local _build () Builds the Mesh part on this
processor not communicating the
outer surface to other processors

28.6 Mesh_entity*
build_cell (int, A_a(Mesh_entity*)&, Species*)
Builds all the Entities required to
add a cell into the Entity container

................................ 61
inline Mesh_entity*
find_common_up (Mesh_entity *a, Mesh_entity *b)
Finds a common up entily given
two entities
inline Mesh_entity*
create_edge (Mesh_entity *n1, Mesh_entity *n2)
Creates an edge given two node en-
tities
inline Mesh_entity*
create_face (A_a(Mesh_entity *)& cells_edges,
int *edges, int num_edges)
Crreates a face given set of edge en-
tities
inline Mesh_entity*
create_cell (A _a(Mesh_entity *)& faces,
int num_faces, Species *cell_species)
Creates a cell given a set of face
entities
Sstring part_n_reader.name ()
Returns a Sstring concatenating
the Mesh part type name and the
Mesh_reader type names
Sstring mesh_part_file () Returns the mesh part file used to
construct this Us_mesh object
void close () Closes the files associated with this
mesh part
virtual “Us_mesh () Default destructor
Protected Members
28.1 Stdcells connect Holds local cell connectivity 62

This page has been automatically gencrated with DOC++

DOC++ is (91995 by Roland Wunderling 58
Malte Zockler

Us_mesh

28
int nodes_built
int edges_built
int faces_built
int cells_built
Usmesh_reader
reader_

Holds the number of nodes con-
structed and inserted into Mesh’s
Entity container

Holds the number of edges con-
structed and inserted into Mesh’s
Entity container

Holds the number of faces con-
structed and inserted into Mesh’s
Entity container

Holds the number of cells con-
structed and inserted into Mesh’s
Entity container

Holds the unstructured
Mesh_reader object

A _a (S_a(Attribute *))

A _a (Species*)

Holds an array of Atiributes
lists associated with common edge
Mesh_entity currently being con-
structed

Holds an array of pointers to pos-
sible Species’ for the edge currently
being constructed

A _a (S_a(Attribute *))

A _a (Species*)

A a (Gid)

Holds an array of Attributes
lists associated with common face
Mesh_entity currently being con-
structed

Holds an array of pointers to pos-
sible Species’ for the face currently
being constructed

An Array of the original Node_id’s
read in from the Mesh input file

A _a (Vector<Mesh_position_type>)

static int reference_count

An Array of the original node posi-
tions read in from the Mesh input
file

Holds a reference count of how

many Us_mesh parts have been in-
stanciated to date

This page has been automatically gencrated with DOC++
DOC++ is (©1995 by Roland Wunderling

Malte Zockier

59

28 Us_mesh

28.2 Us_mesh (const Sstring& cls_name)
Constructor that registers the
given class name in the Mesh types
static regisiry held by Mesh 62

28.3 Sstring part_n_reader_name {const Sstring& cls_name)
Returns a Ssiring concatenating
the given Mesh part type name and
the Mesh_reader type names 62

inline void
add_att (const Sstring& att_name,
S_a(Attribute *)& att)

Given a Sstring this member func-
tion finds and inserts the Atiribute
into the provided Sorted array

void edge _face_att_species_setup ()
Sets up the Edge and Face At-
tribute and Species arrays used in
the Unstrctured grid construction
process

Us_mesh class is a specialization of the Mesh class that handles the construction
of a volumetric homogeneous Unstructured mesh part into the Entity container.
The Us_mesh can add n-faced - m-sided elements into a Mesh. However, the
class is templated based on a Mesh_reader type that must know how to read
these arbitrary cell formats. Furthermore, the class aggregates a Std_cells class
object that must know about the local connectivity of a given cell type. So in
order to support a new type of cell the user must add to the Std_cells class and
a provide or enhance a reader.

28.4

Us_mesh ()

Default constructor

Default constructor. Registers its name in the Mesh types static registry held
by Mesh.

This page has been automatically generated with DOC-++

DOC++ is ©1995 by Roland Wunderling 60
Malte Z5ckler

28 Us_mesh

28.5

virtual void initialize ()

Initializes the Unstructured Mesh part

Initializes the Unstructured Mesh part. The nodes of the unstructured mesh
file part are read in during this initialization phase. Also, limits of the mesh
part are determined.

— 28.6

Mesh_entity* build_cell (int, A _a(Mesh_entity*)&,

Species™)

Builds all the Entities required to add a cell into the Entity container

Builds all the Entities required to add a cell into the Entity container. Given
a set of node ids this member function loops over every face of the cell and every
edge of every face creating any Mesh entities that are required. The following
is a simple outline of the procedure.

Convert node numbers to Entities
For every face
For every edge
If it doesn’t exist
create edge
else
find edge
If face does not exist
create face
else
find_face
given faces
create cell

This page hay been automatically generated with DOC+-+

DOC+-+ is @199 by Roland Wunderling
Malte Zsckler

61

28 Us_mesh

28.1

Std cells connect

Holds local cell connectivity

Holds local cell connectivity. ”Local” here denotes node, edge, and face indexing
relative to a single cell.

28.2

Us_mesh (const Sstring& cls_name)

Constructor that registers the given class name in the Mesh types static
registry held by Mesh

Constructor that registers the given class name in the Mesh types static reg-
istry held by Mesh. Only Derived classes can access this member function.

28.3

Sstring part_n_reader_name (const Sstring& cls_name)

Returns a Sstring concatenating the given Mesh part type name and the
Mesh_reader type names

Returns a Sstring concatenating the given Mesh part type name and the
Mesh.reader type names. This member function can only be called by Derived
class member functions.

This page has been automatically generated with DOC++

DOC++is ©1995 by Roland Wunderling
Mahe Zockler

62

29 Tiger

29

class Tiger

The Tiger Class manages the construction and application of Mesh and Solver
objects at a high level

Public Members
void initialize (int arge, char** argv)
Loads the Attribute data base and
Attribute map files if this is the
first time this member function is

called
291 Tiger (int arge, char** argv)

Default constructor 64
29.2 Tiger (int arge, char** argv,

const Sstring& filename)
Loads the Attribute date base and
Attribute map files 64

void mesh (const Sstring&; filename)
Constructs a Mesh consisting of
the Mesh parts contained in file-
name

Mesh* mesh () Returns a pointer to the currently
constructed mesh

29.3 void geid sync () Syncs the Entities by providing a
unique global Entily identification
number (geid) accross all proces-

SOTS ottt e 65

29.4 inline bool
geid synced () Returns boolean answering
the question of whether the
geid_sync() member function has
been colled 65

void load_sources (const Sstring& sources_filenames)
Reads in Sources input relavent to
the current Mesh and Solver

void load_sensors (const Sstring& sensors_filenames)

This page has been automatically generated with DOC+ 4

DOC++ is 1995 by Roland Wunderling 63
Malte Zockler

29 Tiger

Reads in Sensors input relavent to
the current Mesh and Solver

29.5 “Tiger () Default destructor 65

The Tiger Class manages the construction and application of Mesh and Solver
objects at a high level. Various stages of the preprocessor can be called from
this class. A typical usage would be calls from a gui or script file drivers.

29.1

Tiger (int argc, char** argv)

Default constructor

Default constructor. Loads in the Attribute data base and Attribute map files.
If this is the first Tiger object.

29.2

Tiger (int arge, char** argv, const Sstring& filename)

Loads the Atiribute date base and Attribute map files

Loads the Attribute data base and Attribute map files. Then constructs a Mesh
consisting of the Mesh parts contained in filename.

29.3

void geid_sync ()

Syncs the Entities by providing e unique global Entity identification number
{geid) accross all processors

This page has been automatically generated with DOC++

DOC++4is (©1995 by Roland Wunderling 64
Malte Zockler

29 Tiger

Syncs the Entities by providing a unique global Entity identification number
(geid) accross all processors. In general, geid’s will not be contiguous. After
calling this member function no totally new Entities can be created. New En-
tities created on a given processor must have existed on some other processor
before calling this geid_sync function.

29.4

inline bool geid_synced ()

Returns boolean answering the question of whether the geid_sync() member
function has been called

Returns boolean answering the question of whether the geid_sync() member
function has been called. If geid_synced() == true then use of geids valid.

29.5

~Tiger ()

Default destructor

Default destructor. Deletes the mesh if one exists.

This page bas been automatically generated with DOC++

DOC++ is (©1995 by Roland Wunderling 65
Malte Zockler

Class Graph

Class Graph

11
TABLOALES | e 19

18
S block b e e 31

L 19

Sblock 3d | e e e 32

20
Cfen_block | e e et 38

23
SEAcells] e e e e e 47

25
Solver b e e 50

28
Usamesh | e e e e 57

This page has been automatically generated with DOC-++ 66

DOC++ is ©1995 by Roland Wunderling
Malte Zickler

Class Graph

‘ 21
Smesh | e e e 44
29
B 63
This page has been automatically generated with DOC++ 67

DOC++ is (©1995 by Roland Wunderling

Malte Zockler

	What™s in Array.H -
	given type and size to its children
	given position

	HeapArray - An array located in the heap
	given posistion

	lows the size and capacity to be dynamically adjusted
	top of every block in a ReferenceJVcAway
	Block-header and its associated data
	ray of Blocks
	for a specific element
	1.8.1 operator()

	mon operations for any container

	What™s in Comm.H
	plicated topologies than just MPI-COMM- WORLD
	3.2 Comm - Comm class
	3.3 Message - Base class Message
	3.4 Send - Send buffer
	3.4.2 operator() - Bufler set-up

	3.5 Recv - Receive bufler

	Factory::initialize() spins
	least a pointer to another item

	What™s in Memory-pool.H
	with prev next pointers to create a doublely linked list
	pool
	inside the Memory-pool class
	vides memory always aligned to the requested size

	9 Memorymanager - Memory management class
	tion and guarentee exclusive access when needed
	?™ else it will be ?™staticﬂ
	?™ else

	12 Mutex - Provide a basic thread locking mechanism
	13 What™s in Oct-tree.H
	Octdata - Octdata a union of various pointer types
	trade-o$

	14 What™s in Rb-tree.H
	Rb-tree
	hundreds to billions) of data items
	usually newed

	What™s in Registry.H
	operators are based soley on the Key
	data based on a key that is stored with the data
	fie array

	tasks cumntly supported by the Retriever class
	triever class

	RunTime - Times a progmm (or anything else you desire)
	What™s in Sparsematrix.H
	Sorted-Array container that provides a few additional services
	class for holding entries in a sparse mutrix

	Sstring.H -
	types in addition to the usual string class utilities
	Sstring
	type is

	What™s in Utilities.H
	Class Graph
	Retriever
	I Alignment

	At-data-ptr - Pointer to an At-data
	At-value-ptr - Pointer to an At-value
	Attjnit - Used to initialize At-data™s for global Attributes
	clones and copies

	which are species or local
	At-value - An At-value is a basic wmpper for At-data
	At-value

	Local-data - Local-data is a special type of At-value
	At-value
	clones must inherit from this
	the problem space

	Global registry of Att-tag * to attributes lists
	attmapreader - a good old C style function!
	ENTITY-SIZE and ENTITY-MASK here
	EF(Topo1ogy)->up-ref(local u d)
	sisting of a collection of one or more Attributes
	15.4 operator()
	15.5 operator()

	Exists-on
	Ghost
	Factory - A geneml class to clone objects of a given type
	class

	Filter - This is a temporary comment for the Filter class
	has ended
	strings that name various operators
	precedences

	Const Sstring holding parenthesis chamcters
	ters

	Const Sstring holding decimal digits
	Const Sstring holding hexidecimal digits
	characters
	characters
	which can constitute a valid C++ variable name
	that can truncate a token of operator type
	exist in a given Sstring
	indifidual token can be
	string will be parsed into
	given String into a army of tokens
	single sstring
	object to determine opemtors and precedences
	dences
	ject to determine opemtors and precedences
	SPECIES-SIZE and SPECIES-MASK here
	has

	Boundary-condition
	Truncation-boundary
	Absorbing-boundaryxondition
	Perfect -electrical-conductor
	Cell
	Edge
	Face
	Geometry
	Dual
	Mesh.H
	Mesh-reader classes
	want to abstract it anyway
	position for Cartesian Node Attributes

	Node
	given number of processors accross each of the parts
	number of blocks
	negative oflset
	types
	bookkeeping involved with structured 3- D army calculations
	operator()
	operator()
	operator()
	operator()

	tion bookkeeping for Cell/Face/Edge/Node (CFEN) Entities
	mesh part into the Entitg container

	STD-CELLSH- - Std-cells
	from the Mesh class

	SOLVERII- - Solver
	The Solver class is the base class for all the solvers

	Topology
	USMESHH- - Us-mesh
	neous Unstructured mesh part into the Entity container
	plication of Mesh and Solver objects at a high level
	Class Graph
	Smesh

	Tiger

